

6. Exercise sheet *Semantics and Verification of Software SoSe2010*

Due to Monday, 7th June 2010, *before* the exercise course begins.

Exercise 6.1:

(4 points)

To conclude the denotational semantics answer the following questions.

- (a) What is the key difference of denotational semantics compared to operational semantics? What are its advantages or disadvantages?
- (b) The denotational functional of while statements is given by $\mathfrak{C}[\text{while } b \text{ do } c] := fix(\Phi)$. Which function is described by Φ , where does it come from and what is the meaning of $fix(\Phi)$ in this context?
- (c) List the required properties needed to show that a least fixpoint always exists in our setting. Why did we define $fix(\Phi)$ to be the least fixpoint?
- (d) Consider the definition of $fix(\Phi)$ from the lecture. What is the result type of $fix(\Phi)$, $\Phi(f)$, $\Phi(f)(\sigma)$ with $f : \Sigma \dashrightarrow \Sigma$?

Exercise 6.2:

(2 points)

- (a) Give an assertion $A \in Assn$ with logical variables $i, j, k \in LVar$, expressing that k is the greatest common divisor of i and j .
- (b) The Smarandache-function $\mu(i)$ is defined as the smallest positive integer number satisfying $i \mid (\mu(i)!)$ (i.e. i divides $\mu(i)!$). Give an assertion $A \in Assn$ with logical variables $i, k \in LVar$, expressing that $k = \mu(i)$.

Exercise 6.3:

(3 points)

Develop a proof rule for the statement **repeat** c **until** b .

Exercise 6.4:

(2 points)

Let $c \in Cmd$ be given by

$tmp := x; x := y; y := tmp;$

Establish the validity of the partial correctness property $\{x = i \wedge y = j\} c \{x = j \wedge y = i\}$.