

9. Exercise sheet *Semantics and Verification of Software SoSe2010*

Due to Monday, 28th June 2010, *before* the exercise course begins.

Exercise 9.1:

(3 points)

To conclude the section about axiomatic semantics, answer the following questions.

- What is the idea of axiomatic semantics? Which conclusions about program behaviour can be drawn using them?
- Describe the concept of assertions and partial correctness properties.
- What do you know about soundness and completeness of axiomatic semantics?
- Briefly sketch the steps needed to prove total correctness of a program fragment. Which statements about termination of a program fragment can be proven by means of partial correctness properties?

Exercise 9.2:

(2+2 points)

Prove that the following program terminates for each of the termination expressions:

- $E_1 = \langle m, n \rangle$ with the lexicographic ordering on $\mathbb{N} \times \mathbb{N}$
- $E_2 = 2m + n$ with the „greater than“ ordering on \mathbb{N}

```
{a ≥ 0 ∧ b ≥ 0 ∧ (a ≠ 0 ∨ b ≠ 0)}  
m := a; n := b  
while m > 0 do  
  if m ≤ n then n := n - m  
  else x := m; m := n; n := x;  
  end if  
end while  
{n is greatest common divisor of a and b}
```

Reminder (showing termination):

- Find a set W with a strict well-founded ordering $>$.
- Find a termination expression E with the following properties:
 - Whenever control passes through the beginning of the iterative loop, the value of E is in W .
 - E takes a smaller value with respect to $>$ each time the top of the iterative loop is passed.

Exercise 9.3:**(2 points)**

Assume we allow the usage of recursive function calls in our extended while language from Ex. 8.4. For these functions termination cannot be handled by total correctness rules. But if a suitable property can be identified on which an induction proof is possible, termination of recursive procedures can be shown inductively.

Consider the following procedure, which counts the digits in a number m .

```
procedure count is{
  begin
    if  $m < 10$  then
      ans := 1;
    else
      count( $m/10$ );
      ans := ans + 1;
    end if
  end
```

Give an induction proof for the following lemma stating that the procedure terminates for any nonnegative integer m .

Lemma 1 *If $m > 0$, the procedure count halts.*

Exercise 9.4:**(2 points)**

Consider the axiomatic equivalence of two statements defined in 14.3 in the lecture. Based on this definition show that the following proposition holds:

Proposition 1 $c_1 \approx c_2 \Leftrightarrow \forall A, B \in \text{Assn.} (\models \{A\} c_1 \{\Downarrow B\} \Leftrightarrow \models \{A\} c_2 \{\Downarrow B\})$.