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People

Lectures: Thomas Noll

Lehrstuhl für Informatik 2, Room 4211
E-mail noll@cs.rwth-aachen.de
Phone (0241)80-21213

Exercise classes:

Christina Jansen (christina.jansen@cs.rwth-aachen.de)
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Target Audience

Master/Diplom programme Informatik

Theoretische Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und

Softwarevalidierung (Diplom)

Master programme Software Systems Engineering

Theoretical CS
Specialization in Formal Methods, Programming Languages and

Software Validation
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Target Audience

Master/Diplom programme Informatik

Theoretische Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und

Softwarevalidierung (Diplom)

Master programme Software Systems Engineering

Theoretical CS
Specialization in Formal Methods, Programming Languages and

Software Validation

In general:

interest in formal models for programming languages
application of mathematical reasoning methods

Expected: basic knowledge in

essential concepts of imperative programming languages
formal languages and automata theory
mathematical logic
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Organization

Schedule:

Lecture Wed 10:00–11:30 AH 6 (starting April 21)
Lecture Thu 15:00–16:30 AH 5 (starting April 15)
Exercise class Mon 10:00-11:30 AH 2 (starting April 26)

1st assignment sheet: next Monday (April 19)

Work on assignments in groups of three

Examination (8 [6?] ECTS credit points):

oral
date by agreement

Admission requires at least 50% of the points in the exercises

Solutions to exercises and exam in English or German
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Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
⇒ Compiler Construction

Semantics: “What does this program mean?”
(execution evokes state transformations of an [abstract]
machine)
⇒ This course

Pragmatics: length and understandability of programs
learnability of programming language
appropriateness for specific applications, ...

⇒ Software Engineering
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Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
⇒ Compiler Construction

Semantics: “What does this program mean?”
(execution evokes state transformations of an [abstract]
machine)
⇒ This course

Pragmatics: length and understandability of programs
learnability of programming language
appropriateness for specific applications, ...

⇒ Software Engineering

Historic development:

Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler/interpreter
Formal semantics since 1970s
(operational/denotational/axiomatic)
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Motivation for Rigorous Formal Treatment I

Example 1.1
1 How often will the following loop be traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never
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Motivation for Rigorous Formal Treatment I

Example 1.1
1 How often will the following loop be traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

2 What if p = nil in the following program?

while p <> nil and p^.key < val do ...

Pascal: strict boolean operations  
Modula: non-strict boolean operations

√
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Motivation for Rigorous Formal Treatment II

Support for development of
new programming languages: missing details, ambiguities and
inconsistencies can be recognized
compilers: automatic compiler generation from appropriately
defined semantics
programs: exact understanding of semantics avoids uncertainties in
the implementation of algorithms
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Motivation for Rigorous Formal Treatment II

Support for development of
new programming languages: missing details, ambiguities and
inconsistencies can be recognized
compilers: automatic compiler generation from appropriately
defined semantics
programs: exact understanding of semantics avoids uncertainties in
the implementation of algorithms

Support for correctness proofs of
programs: comparison of program semantics with desired behaviour
(e.g., termination properties)
compilers:

programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

optimizing transformations:

code
optimization−→ code

semantics ↓ ↓ semantics

meaning
?
= meaning
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Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)
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Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Denotational semantics: mathematical definition of input/output
relation of the program by induction on its syntactic
structure (D. Scott, C. Strachey)
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Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Denotational semantics: mathematical definition of input/output
relation of the program by induction on its syntactic
structure (D. Scott, C. Strachey)

Axiomatic semantics: formalization of special properties of the
program by logical formulae (assertions and proof rules;
R. Floyd, T. Hoare)
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Overview of the Course

2 The imperative model language WHILE

3 Operational semantics of WHILE

4 Denotational semantics of WHILE

5 Equivalence of operational and denotational semantics

6 Axiomatic semantics of WHILE

7 Extensions: procedures and dynamic data structures
8 Applications:

Dataflow analysis
Compiler correctness
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Literature

(also see the collection [“Handapparat”] at the CS Library)

Formal semantics:

G. Winskel: The Formal Semantics of Programming Languages,
The MIT Press, 1996

Dataflow analysis:

F. Nielson, H.R. Nielson, C. Hankin: Principles of Program

Analysis, 2nd ed., Springer, 2005

Compiler correctness

H.R. Nielson, F. Nielson: Semantics with Applications: A Formal

Introduction, Wiley, 1992
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Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures
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Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z

Truth values B = {true, false} t

Variables Var = {x, y, . . .} x

Arithmetic expressions AExp (next slide) a

Boolean expressions BExp (next slide) b

Commands (statements) Cmd (next slide) c

Semantics and Verification of Software Summer Semester 2010 14



Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp

c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd
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Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp

c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Remarks: we assume that

the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)

the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)
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A WHILE Program

Example 1.3

x := 6;

y := 7;

z := 0;

while x > 0 do

x := x - 1;

v := y;

while v > 0 do

v := v - 1;

z := z + 1
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A WHILE Program and its Flow Diagram

Example 1.3

x := 6;

y := 7;

z := 0;

while x > 0 do

x := x - 1;

v := y;

while v > 0 do

v := v - 1;

z := z + 1

x > 0 Stop

x := x - 1

v := y

v > 0

v := v - 1 

z := z + 1

x := 6

y := 7

z := 0
T

F

T

F
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A WHILE Program and its Flow Diagram

Example 1.3

x := 6;

y := 7;

z := 0;

while x > 0 do

x := x - 1;

v := y;

while v > 0 do

v := v - 1;

z := z + 1

x > 0 Stop

x := x - 1

v := y

v > 0

v := v - 1 

z := z + 1

x := 6

y := 7

z := 0
T

F

T

F

Effect: z := x * y = 42
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