
Semantics and Verification of Software

Lecture 1: Introduction

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

Semantics and Verification of Software Summer Semester 2010 2

People

Lectures: Thomas Noll

Lehrstuhl für Informatik 2, Room 4211
E-mail noll@cs.rwth-aachen.de
Phone (0241)80-21213

Exercise classes:

Christina Jansen (christina.jansen@cs.rwth-aachen.de)

Semantics and Verification of Software Summer Semester 2010 3

noll@cs.rwth-aachen.de
christina.jansen@cs.rwth-aachen.de

Target Audience

Master/Diplom programme Informatik

Theoretische Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und

Softwarevalidierung (Diplom)

Master programme Software Systems Engineering

Theoretical CS
Specialization in Formal Methods, Programming Languages and

Software Validation

Semantics and Verification of Software Summer Semester 2010 4

Target Audience

Master/Diplom programme Informatik

Theoretische Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und

Softwarevalidierung (Diplom)

Master programme Software Systems Engineering

Theoretical CS
Specialization in Formal Methods, Programming Languages and

Software Validation

In general:

interest in formal models for programming languages
application of mathematical reasoning methods

Expected: basic knowledge in

essential concepts of imperative programming languages
formal languages and automata theory
mathematical logic

Semantics and Verification of Software Summer Semester 2010 4

Organization

Schedule:

Lecture Wed 10:00–11:30 AH 6 (starting April 21)
Lecture Thu 15:00–16:30 AH 5 (starting April 15)
Exercise class Mon 10:00-11:30 AH 2 (starting April 26)

1st assignment sheet: next Monday (April 19)

Work on assignments in groups of three

Examination (8 [6?] ECTS credit points):

oral
date by agreement

Admission requires at least 50% of the points in the exercises

Solutions to exercises and exam in English or German

Semantics and Verification of Software Summer Semester 2010 5

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

Semantics and Verification of Software Summer Semester 2010 6

Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
⇒ Compiler Construction

Semantics: “What does this program mean?”
(execution evokes state transformations of an [abstract]
machine)
⇒ This course

Pragmatics: length and understandability of programs
learnability of programming language
appropriateness for specific applications, ...

⇒ Software Engineering

Semantics and Verification of Software Summer Semester 2010 7

Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
⇒ Compiler Construction

Semantics: “What does this program mean?”
(execution evokes state transformations of an [abstract]
machine)
⇒ This course

Pragmatics: length and understandability of programs
learnability of programming language
appropriateness for specific applications, ...

⇒ Software Engineering

Historic development:

Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler/interpreter
Formal semantics since 1970s
(operational/denotational/axiomatic)

Semantics and Verification of Software Summer Semester 2010 7

Motivation for Rigorous Formal Treatment I

Example 1.1
1 How often will the following loop be traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

Semantics and Verification of Software Summer Semester 2010 8

Motivation for Rigorous Formal Treatment I

Example 1.1
1 How often will the following loop be traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

2 What if p = nil in the following program?

while p <> nil and p^.key < val do ...

Pascal: strict boolean operations
Modula: non-strict boolean operations

√

Semantics and Verification of Software Summer Semester 2010 8

Motivation for Rigorous Formal Treatment II

Support for development of
new programming languages: missing details, ambiguities and
inconsistencies can be recognized
compilers: automatic compiler generation from appropriately
defined semantics
programs: exact understanding of semantics avoids uncertainties in
the implementation of algorithms

Semantics and Verification of Software Summer Semester 2010 9

Motivation for Rigorous Formal Treatment II

Support for development of
new programming languages: missing details, ambiguities and
inconsistencies can be recognized
compilers: automatic compiler generation from appropriately
defined semantics
programs: exact understanding of semantics avoids uncertainties in
the implementation of algorithms

Support for correctness proofs of
programs: comparison of program semantics with desired behaviour
(e.g., termination properties)
compilers:

programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

optimizing transformations:

code
optimization−→ code

semantics ↓ ↓ semantics

meaning
?
= meaning

Semantics and Verification of Software Summer Semester 2010 9

Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Semantics and Verification of Software Summer Semester 2010 10

Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Denotational semantics: mathematical definition of input/output
relation of the program by induction on its syntactic
structure (D. Scott, C. Strachey)

Semantics and Verification of Software Summer Semester 2010 10

Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Denotational semantics: mathematical definition of input/output
relation of the program by induction on its syntactic
structure (D. Scott, C. Strachey)

Axiomatic semantics: formalization of special properties of the
program by logical formulae (assertions and proof rules;
R. Floyd, T. Hoare)

Semantics and Verification of Software Summer Semester 2010 10

Overview of the Course

2 The imperative model language WHILE

3 Operational semantics of WHILE

4 Denotational semantics of WHILE

5 Equivalence of operational and denotational semantics

6 Axiomatic semantics of WHILE

7 Extensions: procedures and dynamic data structures
8 Applications:

Dataflow analysis
Compiler correctness

Semantics and Verification of Software Summer Semester 2010 11

Literature

(also see the collection [“Handapparat”] at the CS Library)

Formal semantics:

G. Winskel: The Formal Semantics of Programming Languages,
The MIT Press, 1996

Dataflow analysis:

F. Nielson, H.R. Nielson, C. Hankin: Principles of Program

Analysis, 2nd ed., Springer, 2005

Compiler correctness

H.R. Nielson, F. Nielson: Semantics with Applications: A Formal

Introduction, Wiley, 1992

Semantics and Verification of Software Summer Semester 2010 12

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

Semantics and Verification of Software Summer Semester 2010 13

Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures

Semantics and Verification of Software Summer Semester 2010 14

Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z

Truth values B = {true, false} t

Variables Var = {x, y, . . .} x

Arithmetic expressions AExp (next slide) a

Boolean expressions BExp (next slide) b

Commands (statements) Cmd (next slide) c

Semantics and Verification of Software Summer Semester 2010 14

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp

c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Semantics and Verification of Software Summer Semester 2010 15

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context-free grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp

c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Remarks: we assume that

the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)

the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

Semantics and Verification of Software Summer Semester 2010 15

A WHILE Program

Example 1.3

x := 6;

y := 7;

z := 0;

while x > 0 do

x := x - 1;

v := y;

while v > 0 do

v := v - 1;

z := z + 1

Semantics and Verification of Software Summer Semester 2010 16

A WHILE Program and its Flow Diagram

Example 1.3

x := 6;

y := 7;

z := 0;

while x > 0 do

x := x - 1;

v := y;

while v > 0 do

v := v - 1;

z := z + 1

x > 0 Stop

x := x - 1

v := y

v > 0

v := v - 1

z := z + 1

x := 6

y := 7

z := 0
T

F

T

F

Semantics and Verification of Software Summer Semester 2010 16

A WHILE Program and its Flow Diagram

Example 1.3

x := 6;

y := 7;

z := 0;

while x > 0 do

x := x - 1;

v := y;

while v > 0 do

v := v - 1;

z := z + 1

x > 0 Stop

x := x - 1

v := y

v > 0

v := v - 1

z := z + 1

x := 6

y := 7

z := 0
T

F

T

F

Effect: z := x * y = 42

Semantics and Verification of Software Summer Semester 2010 16

	Preliminaries
	Introduction
	The Imperative Model Language WHILE

