Semantics and Verification of Software

Lecture 1: Introduction

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Preliminaries

Rm mantics and Verification of Software Summer Semester

@ Lectures: Thomas Noll

o Lehrstuhl fiir Informatik 2, Room 4211
o E-mail noll@cs.rwth-aachen.de

o Phone (0241)80-21213
@ Exercise classes:

o Christina Jansen (christina.jansen@cs.rwth-aachen.de)

Rm Semantics and Verification of Software Summer Semester 2010

noll@cs.rwth-aachen.de
christina.jansen@cs.rwth-aachen.de

Target Audience

@ Master/Diplom programme Informatik
o Theoretische Informatik
o Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung (Diplom)
o Master programme Software Systems FEngineering
o Theoretical CS
o Specialization in Formal Methods, Programming Languages and
Software Validation

Rm Semantics and Verification of Software Summer Semester 2010

Target Audience

@ Master/Diplom programme Informatik
o Theoretische Informatik
o Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung (Diplom)
o Master programme Software Systems FEngineering
o Theoretical CS
o Specialization in Formal Methods, Programming Languages and
Software Validation
@ In general:
o interest in formal models for programming languages
o application of mathematical reasoning methods
o FExpected: basic knowledge in
e essential concepts of imperative programming languages
o formal languages and automata theory
e mathematical logic

Rm Semantics and Verification of Software Summer Semester 2010

Organization

@ Schedule:

o Lecture Wed 10:00-11:30 AH 6 (starting April 21)
o Lecture Thu 15:00-16:30 AH 5 (starting April 15)
o Exercise class Mon 10:00-11:30 AH 2 (starting April 26)

1st assignment sheet: next Monday (April 19)

Work on assignments in groups of three
Examination (8 [67] ECTS credit points):

e oral
e date by agreement

©

Admission requires at least 50% of the points in the exercises

©

Solutions to exercises and exam in English or German

Rm Semantics and Verification of Software Summer Semester 2010

© Introduction

Rm mantics and Verification of Software Summer Semester

Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
= Compiler Construction
Semantics: “What does this program mean?”
(execution evokes state transformations of an [abstract]
machine)
= This course
Pragmatics: @ length and understandability of programs
o learnability of programming language
@ appropriateness for specific applications, ...
= Software Engineering

Rm Semantics and Verification of Software Summer Semester 2010

Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
= Compiler Construction
Semantics: “What does this program mean?”
(execution evokes state transformations of an [abstract]
machine)
= This course
Pragmatics: @ length and understandability of programs
o learnability of programming language
@ appropriateness for specific applications, ...
= Software Engineering

Historic development:
o Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler /interpreter
@ Formal semantics since 1970s

(operational/denotational /axiomatic)
Rm Semantics and Verification of Software Summer Semester 2010

Motivation for Rigorous Formal Treatment I

@ How often will the following loop be traversed?
for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

Semantics and Verification of Software Summer Semester 2010

Motivation for Rigorous Formal Treatment I

@ How often will the following loop be traversed?
for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

© What if p = nil in the following program?
while p <> nil and p~.key < val do ...

Pascal: strict boolean operations 4
Modula: non-strict boolean operations o

Semantics and Verification of Software Summer Semester 2010

Motivation for Rigorous Formal Treatment II

@ Support for development of
@ new programming languages: missing details, ambiguities and
inconsistencies can be recognized
e compilers: automatic compiler generation from appropriately
defined semantics
e programs: exact understanding of semantics avoids uncertainties in
the implementation of algorithms

Rm Semantics and Verification of Software Summer Semester 2010

Motivation for Rigorous Formal Treatment II

@ Support for development of
@ new programming languages: missing details, ambiguities and
inconsistencies can be recognized
e compilers: automatic compiler generation from appropriately
defined semantics
e programs: exact understanding of semantics avoids uncertainties in
the implementation of algorithms
@ Support for correctness proofs of
e programs: comparison of program semantics with desired behaviour
(e.g., termination properties)
e compilers:

. compiler .
programming language — machine code
semantics | | (simple) semantics
. ? .
meaning = meaning

¢ optimizing transformations:

optimization
code — code
semantics | | semantics
. ? .
meaning = meaning

Rm Semantics and fication of Software Summer Semester 2010

Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Rm Semantics and Verification of Software Summer Semester 2010 10

Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Denotational semantics: mathematical definition of input/output

relation of the program by induction on its syntactic
structure (D. Scott, C. Strachey)

Rm Semantics and Verification of Software Summer Semester 2010 10

Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Denotational semantics: mathematical definition of input/output

relation of the program by induction on its syntactic
structure (D. Scott, C. Strachey)

Axiomatic semantics: formalization of special properties of the
program by logical formulae (assertions and proof rules;
R. Floyd, T. Hoare)

Rm Semantics and Verification of Software Summer Semester 2010 10

Overview of the Course

© The imperative model language WHILE

© Operational semantics of WHILE

@ Denotational semantics of WHILE

@ Equivalence of operational and denotational semantics
@ Axiomatic semantics of WHILE

@ Extensions: procedures and dynamic data structures
© Applications:

o Dataflow analysis
o Compiler correctness

m' Semantics and Verification of Software Summer Semester 2010

(also see the collection [“Handapparat”] at the CS Library)

o Formal semantics:
o G. Winskel: The Formal Semantics of Programming Languages,
The MIT Press, 1996
o Dataflow analysis:
o F. Nielson, H.R. Nielson, C. Hankin: Principles of Program
Analysis, 2nd ed., Springer, 2005
o Compiler correctness

e H.R. Nielson, F. Nielson: Semantics with Applications: A Formal
Introduction, Wiley, 1992

m' Semantics and Verification of Software Summer Semester 2010 12

© The Imperative Model Language WHILE

Rm Semantics and fication of Software Summer Semester 2010 13

Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures

Rm Semantics and Verification of Software Summer Semester 2010 14

Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers z={0,1,—-1,...} =z
Truth values B = {true, false} ¢
Variables Var = {x,y,...} =
Arithmetic expressions AEzp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) ¢

m' Semantics and Verification of Software Summer Semester 2010 14

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context-free grammar:

a:=z|x|ar+ag | ai-as | ar*az € AExp
b=t ‘ a1=ay ‘ a1>a9 | —b ‘ b1 N by ‘ b1 V by € BExp
cu=skip | x :=a|c1;co | if b then ¢; else ¢ | while b do ¢ € Cmd

m' Semantics and Verification of Software Summer Semester 2010 15

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context-free grammar:

a:=z|x|ar+ag | ai-as | ar*az € AExp
b=t ‘ a1=ay ‘ a1>a9 | —b ‘ b1 N by ‘ b1 V by € BExp
cu=skip | x :=a|c1;co | if b then ¢; else ¢ | while b do ¢ € Cmd

Remarks: we assume that
o the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)
@ the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

m Semantics and Verification of Software Summer Semester 2010 15

A WHILE Program

X := 6;
y :=T;
z := 0;

while x > 0 do
X :=x - 1;
vV i=y;
while v > 0 do
v :=v - 1;
z =z + 1

Semantics and Verification of Software Summer Semester 2010 16

A WHILE Program and its Flow Diagram

X := 6;
y :=T;
z := 0;

while x > 0 do
X :=x - 1;
vV i=y;
while v > 0 do
v :=v - 1;
z =z + 1

m' Semantics and Verification of Software Summer Semester 2010

A WHILE Program and its Flow Diagram

X := 6;
y :=T;
z := 0;
while x > 0 do
X :=x - 1;
vV i=y;
while v > 0 do
v :=v - 1;
z =z + 1

Effect: z := x x y = 42

m' Semantics and Verification of Software Summer Semester 2010

	Preliminaries
	Introduction
	The Imperative Model Language WHILE

