Semantics and Verification of Software

Lecture 10: Axiomatic Semantics of WHILE I
(Introduction)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ The Axiomatic Approach

Rm Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach I

Example 10.1

o Let ¢ € Umd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

m' Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach I

Example 10.1

o Let ¢ € Umd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

o) ;o

o How to show that, after termination of ¢, o(s) = > .

m' Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach I

Example 10.1

o Let ¢ € Umd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = >,/ i

@ “Running” ¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof

m' Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach I

Example 10.1

o Let ¢ € Umd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = >,/ i

@ “Running” ¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof

o Wanted: a more abstract, “symbolic” way of reasoning

m' Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach II

Example 10.1 (continued)

Obviously c¢ satisfies the following assertions (after execution of the
respective statement):

s:=0;
{s =0}
n:=1;
{s=0An=1}

while —(n>N) do (s:=s+n; n:=n+1)
{s=>"iAn>N}

where, e.g., “s = 0” means “o(s) = 0 in the current state o € X7

m Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)

Rm Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)
o Also, “n > N” follows directly from the loop’s execution condition

Rm Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)
o Also, “n > N” follows directly from the loop’s execution condition
o But how to obtain the final value of s?

Rm Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 07)

Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?;llz is
satisfied

¢ © ¢ ¢

Rm Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—llz is

satisfied

@ Corresponding proof system employs partial correctness properties
of the form {A} c{B} with assertions A, B and ¢ € Cmd

¢ © ¢ ¢

Rm Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—llz is

satisfied

@ Corresponding proof system employs partial correctness properties
of the form {A} c{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € 3, then ¢’ satisfies B.

m' Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—llz is

satisfied

@ Corresponding proof system employs partial correctness properties
of the form {A} c{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € 3, then ¢’ satisfies B.

o “Partial” means that nothing is said about c if it fails to terminate

m' Semantics and Verification of Software Summer Semester 2010

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—llz is

satisfied

@ Corresponding proof system employs partial correctness properties
of the form {A} c{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € 3, then ¢’ satisfies B.

o “Partial” means that nothing is said about c if it fails to terminate
o In particular,
{true} while true do skip {false}

is a valid property
m' Semantics and Verification of Software Summer Semester 2010

© The Assertion Language

Rm Semantics and Verification of Software Summer Semester 2010

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Rm Semantics and Verification of Software Summer Semester 2010

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar 1
Arithmetic expressions
with log. var. LEzp a
Assertions Assn A B,C

Rm Semantics and Verification of Software Summer Semester 2010

Syntax of Assertion Language II

Definition 10.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a:x=z|xl|i|ar+as | ar-as | ai*as € LEzp
A=t | a1=a9 | a1>a9 | -A | Al N Ay | A1V Ay | Vi.A € Assn

m' Semantics and Verification of Software Summer Semester 2010

Syntax of Assertion Language II

Definition 10.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a:x=z|xl|i|ar+as | ar-as | ai*as € LEzp
A=t | a1=a9 | a1>a9 | -A | Al N Ay | A1V Ay | Vi.A € Assn

Abbreviations:

A = Ay = —-A;V Ay
3i.A == (Vi A)
a1 > a9 = ai>as V ai=ay

m' Semantics and Verification of Software Summer Semester 2010

© Semantics of Assertions

Rm Semantics and Verification of Software Summer Semester 2010

Semantics of LFxp

The semantics now additionally depends on values of logical variables:

Definition 10.3 (Semantics of LExp)

An interpretation is an element of the set
Int:={I|I:LVar — Z}.
The value of an arithmetic expressions with logical variables is given by
the functional
L[] : LEzp — (Int — (¥ — Z))

where

Llz]Io = Llaita]lo = Llai]lo + L[az]Io

Llz]lo := o(x) Llai-ag]lo := Lla1]lo — L[az]Io

Lli]lo = 1(i) Llai*as]Io = Llai]lo * Llaz]Io

|
w

m Semantics and Verification of Software Summer Semester 2010

Semantics of LFxp

The semantics now additionally depends on values of logical variables:

Definition 10.3 (Semantics of LExp)

An interpretation is an element of the set
Int:={I|I:LVar — Z}.
The value of an arithmetic expressions with logical variables is given by
the functional
L[.]: LEzp — (Int — (£ — Z))
where

Llz]Io := 2 Llai+as]lo = Lai]lo + Laz]lo
Llz]lo := o(x) Llai-ag]lo := Lla1]lo — L[az]Io
Lli]lo = 1(7) Llai*as]Io = Llai]lo * Llaz]Io

Def. 5.2 (denotational semantics of arithmetic expressions) implies:

Corollary 10.4

For every a € AExp (without logical variables), I € Int, and o € X:
Lla]lo = Afa]o.

m' Semantics and Verification of Software Summer Semester 2010 10

Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

Rm Semantics and Verification of Software Summer Semester 2010 11

Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

@ Non-terminating computations captured by undefined state _L:

S =xu{l}

Rm Semantics and Verification of Software Summer Semester 2010

Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

@ Non-terminating computations captured by undefined state _L:

S =xu{l}

@ Modification of interpretations (in analogy to program states):

Ii — 2](j) = {;(]) =1

otherwise

Rm Semantics and Verification of Software Summer Semester 2010

Semantics of Assertions II

Reminder:
A=t | a1=a9 | a1>a9 | —-A | A N As | AV Ay | Vi.A € Assn

Definition 10.5 (Semantics of assertions)

Let A € Assn, o0 € ¥, and I € Int. The relation “o satisfies A in [”
(notation: o =! A) is inductively defined by:

o = true

o =l aj=as if LJa1]lo = Llaz]lo

o =l ar>as if L[a1]lo > Llaz]lo

o=l -4 if not o =1 A

U):IAl/\Ag ifa):IAlanda):IAg

U':IA1VA2 ifa'zIAlora):IAQ

o =l vi.A if o =121 A for every z € Z

Furthermore “o satisfies A” (o |= A) if o =1 A for every interpretation
I € Int, and A is called valid (= A) if 0 = A for every state o € X.

m Semantics and Verification of Software Summer Semester 2010 12

Semantics of Assertions III

The following assertion expresses that, in the current state o € 3, o(y)
is the greatest divisor of o(x):

(Fii > 1ANixy=2) AVjVEk.(j > 1A jxk =2 = k <y)

m' Semantics and Verification of Software Summer Semester 2010 13

Semantics of Assertions III

The following assertion expresses that, in the current state o € 3, o(y)
is the greatest divisor of o(x):

(Fii > 1ANixy=2) AVjVEk.(j > 1A jxk =2 = k <y)

In analogy to Corollary 10.4, Def. 5.3 (denotational semantics of
Boolean expressions) yields:

For every b € BExp (without logical variables), I € Int, and o € X:

o=l b = B[b]o = true.

m Semantics and Verification of Software Summer Semester 2010

Semantics of Assertions IV

Definition 10.8 (Extension)
Let A € Assn and I € Int. The extension of A with respect to [is
given by

Al :={ocex, |oE" A}

Note that, for every A € Assn and I € Int, 1L € A”.

m' Semantics and Verification of Software Summer Semester 2010 14

Semantics of Assertions IV

Definition 10.8 (Extension)
Let A € Assn and I € Int. The extension of A with respect to [is
given by

Al :={ocex, |oE" A}

Note that, for every A € Assn and I € Int, 1L € A”.

For A := (Ji.ixi = z) and every I € Int,

Al ={1}Uu{oceX|o(x)c{0,1,4,9,...}}

m' Semantics and Verification of Software Summer Semester 2010

@ Partial Correctness Properties

Rm Semantics and Verification of Software Summer Semester 2010 15

Partial Correctness Properties

Definition 10.10 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

m' Semantics and Verification of Software Summer Semester 2010 16

Partial Correctness Properties

Definition 10.10 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given o € X | and [€ Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).

m' Semantics and Verification of Software Summer Semester 2010 16

Partial Correctness Properties

Definition 10.10 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given o € X | and [€ Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B}) if
o =1 {A} ¢{B} for every o € ¥ (or equivalently: €[c]JA! C BY).

m' Semantics and Verification of Software Summer Semester 2010 16

Partial Correctness Properties

Definition 10.10 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given o € X | and [€ Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B}) if
o =1 {A} ¢{B} for every o € ¥ (or equivalently: €[c]JA! C BY).
o {A}c{B} is called valid (notation: |= {A}c{B}) if ! {A}c{B}
for every I € Int.

m' Semantics and Verification of Software Summer Semester 2010 16

© A Valid Partial Correctness Property

Rm Semantics and Verification of Software Summer Semester 2010

A Valid Partial Correctness Property

o Let x € Var and 7 € LVar. We have to show:
E={i<x}x := x+1{i <x}

Semantics and Verification of Software Summer Semester 2010 18

A Valid Partial Correctness Property

@ Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int

Semantics and Verification of Software Summer Semester 2010

A Valid Partial Correctness Property

@ Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int

o For o0 = 1 this is trivial. So let o € X:
o= (i <x)

Semantics and Verification of Software Summer Semester 2010

A Valid Partial Correctness Property

o Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int
o For o = | this is trivial. So let o € X:

o= (i <x)
= L[i[Io < £[x]Ic (Def. 10.5)

Semantics and Verification of Software Summer Semester 2010 18

A Valid Partial Correctness Property

o Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int
o For o = | this is trivial. So let o € X:

o= (i <x)
= L[i[Io < £[x]Ic (Def. 10.5)
= I(i) <o(x) (Def. 10.3)

Semantics and Verification of Software Summer Semester 2010 18

A Valid Partial Correctness Property

o Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int
o For o = | this is trivial. So let o € X:

o= (i <x)
= L[i[Io < £[x]Ic (Def. 10.5)
= I(i) <o(x) (Def. 10.3)
= I(i) <o(x)+1
= (Cfx := x+1]o)(x)

Semantics and Verification of Software Summer Semester 2010

A Valid Partial Correctness Property

o Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int
o For o = | this is trivial. So let o € X:

o= (i <x)
LliJIo < £[x]Ioc (Def. 10.5)
I(i) < o(x) (Def. 10.3)
I(i) < o(x)+1

= (Cfx := x+1]o)(x)
Cx := x+1]o =L (i < x)

il

Semantics and Verification of Software Summer Semester 2010

A Valid Partial Correctness Property

o Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int
o For o = | this is trivial. So let o € X:

o= (i <x)
LliJIo < £[x]Ioc (Def. 10.5)
I(i) < o(x) (Def. 10.3)
I(i) < o(x)+1

= (Cfx := x+1]o)(x)
Cx := x+1]o =L (i < x)

claim

IR

Semantics and Verification of Software Summer Semester 2010

	The Axiomatic Approach
	The Assertion Language
	Semantics of Assertions
	Partial Correctness Properties
	A Valid Partial Correctness Property

