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The Axiomatic Approach I

Example 10.1

o Let ¢ € Umd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)
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The Axiomatic Approach I

Example 10.1

o Let ¢ € Umd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

o) ;o

o How to show that, after termination of ¢, o(s) = > .
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The Axiomatic Approach I

Example 10.1

o Let ¢ € Umd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = >,/ i

@ “Running” ¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof
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The Axiomatic Approach I

Example 10.1

o Let ¢ € Umd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

o How to show that, after termination of ¢, o(s) = >,/ i

@ “Running” ¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof

o Wanted: a more abstract, “symbolic” way of reasoning
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The Axiomatic Approach II

Example 10.1 (continued)

Obviously c¢ satisfies the following assertions (after execution of the
respective statement):

s:=0;
{s =0}
n:=1;
{s=0An=1}

while —(n>N) do (s:=s+n; n:=n+1)
{s=>"iAn>N}

where, e.g., “s = 0” means “o(s) = 0 in the current state o € X7
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The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)
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The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)
o Also, “n > N” follows directly from the loop’s execution condition
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The Axiomatic Approach III

How to prove the validity of assertions?
o Assertions following assignments are evident (“s = 0”)
o Also, “n > N” follows directly from the loop’s execution condition
o But how to obtain the final value of s?
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 07)

Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?;llz is
satisfied

¢ © ¢ ¢
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—llz is

satisfied

@ Corresponding proof system employs partial correctness properties
of the form {A} c{B} with assertions A, B and ¢ € Cmd

¢ © ¢ ¢
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—llz is

satisfied

@ Corresponding proof system employs partial correctness properties
of the form {A} c{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € 3, then ¢’ satisfies B.
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—llz is

satisfied

@ Corresponding proof system employs partial correctness properties
of the form {A} c{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € 3, then ¢’ satisfies B.

o “Partial” means that nothing is said about c if it fails to terminate
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = Z?:—llz is

satisfied

@ Corresponding proof system employs partial correctness properties
of the form {A} c{B} with assertions A, B and ¢ € Cmd

o Interpretation:

¢ © ¢ ¢

Validity of property {A} c{B}

For all states 0 € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € 3, then ¢’ satisfies B.

o “Partial” means that nothing is said about c if it fails to terminate
o In particular,
{true} while true do skip {false}

is a valid property
m' Semantics and Verification of Software Summer Semester 2010




© The Assertion Language
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Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)
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Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar 1
Arithmetic expressions
with log. var. LEzp a
Assertions Assn A B,C
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Syntax of Assertion Language II

Definition 10.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a:x=z|xl|i|ar+as | ar-as | ai*as € LEzp
A=t | a1=a9 | a1>a9 | -A | Al N Ay | A1V Ay | Vi.A € Assn
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Syntax of Assertion Language II

Definition 10.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a:x=z|xl|i|ar+as | ar-as | ai*as € LEzp
A=t | a1=a9 | a1>a9 | -A | Al N Ay | A1V Ay | Vi.A € Assn

Abbreviations:

A = Ay = —-A;V Ay
3i.A == (Vi A)
a1 > a9 = ai>as V ai=ay
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© Semantics of Assertions
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Semantics of LFxp

The semantics now additionally depends on values of logical variables:

Definition 10.3 (Semantics of LExp)

An interpretation is an element of the set
Int:={I|I:LVar — Z}.
The value of an arithmetic expressions with logical variables is given by
the functional
L[] : LEzp — (Int — (¥ — Z))

where

Llz]Io = Llaita]lo = Llai]lo + L[az]Io

Llz]lo := o(x) Llai-ag]lo := Lla1]lo — L[az]Io

Lli]lo = 1(i) Llai*as]Io = Llai]lo * Llaz]Io

|
w
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Semantics of LFxp

The semantics now additionally depends on values of logical variables:

Definition 10.3 (Semantics of LExp)

An interpretation is an element of the set
Int:={I|I:LVar — Z}.
The value of an arithmetic expressions with logical variables is given by
the functional
L[.]: LEzp — (Int — (£ — Z))
where

Llz]Io := 2 Llai+as]lo = Lai]lo + Laz]lo
Llz]lo := o(x) Llai-ag]lo := Lla1]lo — L[az]Io
Lli]lo = 1(7) Llai*as]Io = Llai]lo * Llaz]Io

Def. 5.2 (denotational semantics of arithmetic expressions) implies:

Corollary 10.4

For every a € AExp (without logical variables), I € Int, and o € X:
Lla]lo = Afa]o.
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Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)
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Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

@ Non-terminating computations captured by undefined state _L:

S =xu{l}
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Semantics of Assertions 1

o Formalized by a satisfaction relation of the form
cEA

(where 0 € ¥ and A € Assn)

@ Non-terminating computations captured by undefined state _L:

S =xu{l}

@ Modification of interpretations (in analogy to program states):

Ii — 2](j) = {;(]) =1

otherwise
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Semantics of Assertions II

Reminder:
A=t | a1=a9 | a1>a9 | —-A | A N As | AV Ay | Vi.A € Assn

Definition 10.5 (Semantics of assertions)

Let A € Assn, o0 € ¥, and I € Int. The relation “o satisfies A in [”
(notation: o =! A) is inductively defined by:

o = true

o =l aj=as if LJa1]lo = Llaz]lo

o =l ar>as if L[a1]lo > Llaz]lo

o=l -4 if not o =1 A

U):IAl/\Ag ifa):IAlanda):IAg

U':IA1VA2 ifa'zIAlora):IAQ

o =l vi.A if o =121 A for every z € Z

Furthermore “o satisfies A” (o |= A) if o =1 A for every interpretation
I € Int, and A is called valid (= A) if 0 = A for every state o € X.
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Semantics of Assertions III

The following assertion expresses that, in the current state o € 3, o(y)
is the greatest divisor of o(x):

(Fii > 1ANixy=2) AVjVEk.(j > 1A jxk =2 = k <y)
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Semantics of Assertions III

The following assertion expresses that, in the current state o € 3, o(y)
is the greatest divisor of o(x):

(Fii > 1ANixy=2) AVjVEk.(j > 1A jxk =2 = k <y)

In analogy to Corollary 10.4, Def. 5.3 (denotational semantics of
Boolean expressions) yields:

For every b € BExp (without logical variables), I € Int, and o € X:

o=l b = B[b]o = true.
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Semantics of Assertions IV

Definition 10.8 (Extension)
Let A € Assn and I € Int. The extension of A with respect to [ is
given by

Al :={ocex, |oE" A}

Note that, for every A € Assn and I € Int, 1L € A”.
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Semantics of Assertions IV

Definition 10.8 (Extension)
Let A € Assn and I € Int. The extension of A with respect to [ is
given by

Al :={ocex, |oE" A}

Note that, for every A € Assn and I € Int, 1L € A”.

For A := (Ji.ixi = z) and every I € Int,

Al ={1}Uu{oceX|o(x)c{0,1,4,9,...}}
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@ Partial Correctness Properties
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Partial Correctness Properties

Definition 10.10 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.
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Partial Correctness Properties

Definition 10.10 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given o € X | and [ € Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
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Partial Correctness Properties

Definition 10.10 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given o € X | and [ € Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B}) if
o =1 {A} ¢{B} for every o € ¥ (or equivalently: €[c]JA! C BY).
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Partial Correctness Properties

Definition 10.10 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given o € X | and [ € Int, we let

o =" {4} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: 0 € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B}) if
o =1 {A} ¢{B} for every o € ¥ (or equivalently: €[c]JA! C BY).
o {A}c{B} is called valid (notation: |= {A}c{B}) if ! {A}c{B}
for every I € Int.
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© A Valid Partial Correctness Property
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A Valid Partial Correctness Property

o Let x € Var and 7 € LVar. We have to show:
E={i<x}x := x+1{i <x}
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A Valid Partial Correctness Property

@ Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int
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A Valid Partial Correctness Property

@ Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int

o For o0 = 1 this is trivial. So let o € X:
o= (i <x)
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A Valid Partial Correctness Property

o Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int
o For o = | this is trivial. So let o € X:

o= (i <x)
= L[i[Io < £[x]Ic (Def. 10.5)
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A Valid Partial Correctness Property

o Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int
o For o = | this is trivial. So let o € X:

o= (i <x)
= L[i[Io < £[x]Ic (Def. 10.5)
= I(i) <o(x) (Def. 10.3)
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A Valid Partial Correctness Property

o Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int
o For o = | this is trivial. So let o € X:

o= (i <x)
= L[i[Io < £[x]Ic (Def. 10.5)
= I(i) <o(x) (Def. 10.3)
= I(i) <o(x)+1
= (Cfx := x+1]o)(x)
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A Valid Partial Correctness Property

o Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int
o For o = | this is trivial. So let o € X:

o= (i <x)
LliJIo < £[x]Ioc (Def. 10.5)
I(i) < o(x) (Def. 10.3)
I(i) < o(x)+1

= (Cfx := x+1]o)(x)
Cx := x+1]o =L (i < x)

il
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A Valid Partial Correctness Property

o Let x € Var and ¢ € LVar. We have to show:
E{i<x}x := x+1{i <x}
o According to Def. 10.10, this is equivalent to
o= {i <x}x := x+1{i <x}
for every o € | and I € Int
o For o = | this is trivial. So let o € X:

o= (i <x)
LliJIo < £[x]Ioc (Def. 10.5)
I(i) < o(x) (Def. 10.3)
I(i) < o(x)+1

= (Cfx := x+1]o)(x)
Cx := x+1]o =L (i < x)

claim

IR
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