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The Axiomatic Approach I

Example 10.1

Let c ∈ Cmd be given by
s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)
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The Axiomatic Approach I

Example 10.1

Let c ∈ Cmd be given by
s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c, σ(s) =
∑σ(N)

i=1 i?
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The Axiomatic Approach I

Example 10.1

Let c ∈ Cmd be given by
s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c, σ(s) =
∑σ(N)

i=1 i?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning
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The Axiomatic Approach II

Example 10.1 (continued)

Obviously c satisfies the following assertions (after execution of the
respective statement):

s:=0;

{s = 0}
n:=1;

{s = 0 ∧ n = 1}
while ¬(n>N) do (s:=s+n; n:=n+1)

{s =
∑N

i=1 i ∧ n > N}

where, e.g., “s = 0” means “σ(s) = 0 in the current state σ ∈ Σ”
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
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i=1 i is

satisfied

Semantics and Verification of Software Summer Semester 2010 5



The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
i=1 i is

satisfied
Corresponding proof system employs partial correctness properties
of the form {A} c {B} with assertions A,B and c ∈ Cmd
Interpretation:

Validity of property {A} c {B}

For all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate
In particular,

{true} while true do skip {false}
is a valid property
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Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)
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Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar i

Arithmetic expressions
with log. var. LExp a

Assertions Assn A,B,C
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Syntax of Assertion Language II

Definition 10.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn
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Syntax of Assertion Language II

Definition 10.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Abbreviations:

A1 =⇒ A2 := ¬A1 ∨ A2

∃i.A := ¬(∀i.¬A)
a1 ≥ a2 := a1>a2 ∨ a1=a2

...
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Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 10.3 (Semantics of LExp)

An interpretation is an element of the set
Int := {I | I : LVar → Z}.

The value of an arithmetic expressions with logical variables is given by
the functional

LJ.K : LExp → (Int → (Σ → Z))
where

LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ

LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ

LJiKIσ := I(i) LJa1*a2KIσ := LJa1KIσ ∗ LJa2KIσ
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Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 10.3 (Semantics of LExp)

An interpretation is an element of the set
Int := {I | I : LVar → Z}.

The value of an arithmetic expressions with logical variables is given by
the functional

LJ.K : LExp → (Int → (Σ → Z))
where

LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ

LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ

LJiKIσ := I(i) LJa1*a2KIσ := LJa1KIσ ∗ LJa2KIσ

Def. 5.2 (denotational semantics of arithmetic expressions) implies:

Corollary 10.4

For every a ∈ AExp (without logical variables), I ∈ Int, and σ ∈ Σ:
LJaKIσ = AJaKσ.
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Semantics of Assertions I

Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)
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Semantics of Assertions I

Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)

Non-terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

Modification of interpretations (in analogy to program states):

I[i 7→ z](j) :=

{

z if j = i

I(j) otherwise
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Semantics of Assertions II

Reminder:
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Definition 10.5 (Semantics of assertions)

Let A ∈ Assn, σ ∈ Σ⊥, and I ∈ Int . The relation “σ satisfies A in I”
(notation: σ |=I A) is inductively defined by:

σ |=I
true

σ |=I a1=a2 if LJa1KIσ = LJa2KIσ

σ |=I a1>a2 if LJa1KIσ > LJa2KIσ

σ |=I ¬A if not σ |=I A

σ |=I A1 ∧ A2 if σ |=I A1 and σ |=I A2

σ |=I A1 ∨ A2 if σ |=I A1 or σ |=I A2

σ |=I ∀i.A if σ |=I[i7→z] A for every z ∈ Z

⊥ |=I A

Furthermore “σ satisfies A” (σ |= A) if σ |=I A for every interpretation
I ∈ Int , and A is called valid (|= A) if σ |= A for every state σ ∈ Σ.
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Semantics of Assertions III

Example 10.6

The following assertion expresses that, in the current state σ ∈ Σ, σ(y)
is the greatest divisor of σ(x):

(∃i.i > 1 ∧ i*y = x) ∧ ∀j.∀k.(j > 1 ∧ j*k = x =⇒ k ≤ y)
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Semantics of Assertions III

Example 10.6

The following assertion expresses that, in the current state σ ∈ Σ, σ(y)
is the greatest divisor of σ(x):

(∃i.i > 1 ∧ i*y = x) ∧ ∀j.∀k.(j > 1 ∧ j*k = x =⇒ k ≤ y)

In analogy to Corollary 10.4, Def. 5.3 (denotational semantics of
Boolean expressions) yields:

Corollary 10.7

For every b ∈ BExp (without logical variables), I ∈ Int, and σ ∈ Σ:

σ |=I b ⇐⇒ BJbKσ = true.
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Semantics of Assertions IV

Definition 10.8 (Extension)

Let A ∈ Assn and I ∈ Int . The extension of A with respect to I is
given by

AI := {σ ∈ Σ⊥ | σ |=I A}.

Note that, for every A ∈ Assn and I ∈ Int , ⊥ ∈ AI .
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Semantics of Assertions IV

Definition 10.8 (Extension)

Let A ∈ Assn and I ∈ Int . The extension of A with respect to I is
given by

AI := {σ ∈ Σ⊥ | σ |=I A}.

Note that, for every A ∈ Assn and I ∈ Int , ⊥ ∈ AI .

Example 10.9

For A := (∃i.i*i = x) and every I ∈ Int ,

AI = {⊥} ∪ {σ ∈ Σ | σ(x) ∈ {0, 1, 4, 9, . . .}}
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Partial Correctness Properties

Definition 10.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.
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Partial Correctness Properties

Definition 10.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int , we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B

(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ BI).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ BI).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int .
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A Valid Partial Correctness Property

Example 10.11

Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}
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Example 10.11

Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

According to Def. 10.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:
σ |=I (i ≤ x)

=⇒ LJiKIσ ≤ LJxKIσ (Def. 10.5)
=⇒ I(i) ≤ σ(x) (Def. 10.3)
=⇒ I(i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
=⇒ CJx := x+1Kσ |=I (i < x)
=⇒ claim
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