

Semantics and Verification of Software

Lecture 11: Axiomatic Semantics of WHILE II (Hoare Logic)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw10/>

Summer Semester 2010

1 Repetition: Partial Correctness Properties

2 Proof Rules for Partial Correctness

Validity of property $\{A\} c \{B\}$

For all states $\sigma \in \Sigma$ which satisfy A :

if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

Definition (Syntax of assertions)

The **syntax of *Assn*** is defined by the following context-free grammar:

$$a ::= z \mid x \mid \textcolor{red}{i} \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in LExp$$

$$A ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \wedge A_2 \mid A_1 \vee A_2 \mid \textcolor{red}{\forall i. A} \in Assn$$

Abbreviations:

$$A_1 \implies A_2 := \neg A_1 \vee A_2$$

$$\exists i. A := \neg(\forall i. \neg A)$$

$$a_1 \geq a_2 := a_1 > a_2 \vee a_1 = a_2$$

⋮

The semantics now additionally depends on values of logical variables:

Definition (Semantics of *LExp*)

An **interpretation** is an element of the set

$$\text{Int} := \{I \mid I : \text{LVar} \rightarrow \mathbb{Z}\}.$$

The **value of an arithmetic expressions with logical variables** is given by the functional

$$\mathfrak{L}[\cdot] : \text{LExp} \rightarrow (\text{Int} \rightarrow (\Sigma \rightarrow \mathbb{Z}))$$

where

$$\begin{array}{ll} \mathfrak{L}[z]I\sigma := z & \mathfrak{L}[a_1+a_2]I\sigma := \mathfrak{L}[a_1]I\sigma + \mathfrak{L}[a_2]I\sigma \\ \mathfrak{L}[x]I\sigma := \sigma(x) & \mathfrak{L}[a_1-a_2]I\sigma := \mathfrak{L}[a_1]I\sigma - \mathfrak{L}[a_2]I\sigma \\ \mathfrak{L}[i]I\sigma := I(i) & \mathfrak{L}[a_1*a_2]I\sigma := \mathfrak{L}[a_1]I\sigma * \mathfrak{L}[a_2]I\sigma \end{array}$$

Reminder:

$A ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \wedge A_2 \mid A_1 \vee A_2 \mid \forall i. A \in Assn$

Definition (Semantics of assertions)

Let $A \in Assn$, $\sigma \in \Sigma_{\perp}$, and $I \in Int$. The relation “ σ satisfies A in I ” (notation: $\sigma \models^I A$) is inductively defined by:

$$\sigma \models^I \text{true}$$

$$\sigma \models^I a_1 = a_2 \quad \text{if } \mathcal{L}[[a_1]]I\sigma = \mathcal{L}[[a_2]]I\sigma$$

$$\sigma \models^I a_1 > a_2 \quad \text{if } \mathcal{L}[[a_1]]I\sigma > \mathcal{L}[[a_2]]I\sigma$$

$$\sigma \models^I \neg A \quad \text{if not } \sigma \models^I A$$

$$\sigma \models^I A_1 \wedge A_2 \quad \text{if } \sigma \models^I A_1 \text{ and } \sigma \models^I A_2$$

$$\sigma \models^I A_1 \vee A_2 \quad \text{if } \sigma \models^I A_1 \text{ or } \sigma \models^I A_2$$

$$\sigma \models^I \forall i. A \quad \text{if } \sigma \models^{I[i \mapsto z]} A \text{ for every } z \in \mathbb{Z}$$

$$\perp \models^I A$$

Furthermore “ σ satisfies A ” ($\sigma \models A$) if $\sigma \models^I A$ for every interpretation $I \in Int$, and A is called **valid** ($\models A$) if $\sigma \models A$ for every state $\sigma \in \Sigma$.

Definition (Partial correctness properties)

Let $A, B \in \text{Assn}$ and $c \in \text{Cmd}$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \implies \mathfrak{C}[c]\sigma \in B^I$).

- $\{A\} c \{B\}$ is called **valid in I** (notation: $\models^I \{A\} c \{B\}$) if $\sigma \models^I \{A\} c \{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[c]A^I \subseteq B^I$).
- $\{A\} c \{B\}$ is called **valid** (notation: $\models \{A\} c \{B\}$) if $\models^I \{A\} c \{B\}$ for every $I \in \text{Int}$.

1 Repetition: Partial Correctness Properties

2 Proof Rules for Partial Correctness

Goal: syntactic derivation of valid partial correctness properties

Definition 11.1 (Hoare Logic)

The **Hoare rules** are given by

$$\begin{array}{c} (\text{skip}) \frac{}{\{A\} \text{ skip } \{A\}} \qquad \qquad (\text{asgn}) \frac{}{\{A[x \mapsto a]\} x := a \{A\}} \\ (\text{seq}) \frac{\{A\} c_1 \{C\} \quad \{C\} c_2 \{B\}}{\{A\} c_1; c_2 \{B\}} \quad (\text{if}) \frac{\{A \wedge b\} c_1 \{B\} \quad \{A \wedge \neg b\} c_2 \{B\}}{\{A\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{B\}} \\ (\text{while}) \frac{\{A \wedge b\} c \{A\}}{\{A\} \text{ while } b \text{ do } c \{A \wedge \neg b\}} \\ (\text{cons}) \frac{\models (A \implies A') \quad \{A'\} c \{B'\} \quad \models (B' \implies B)}{\{A\} c \{B\}} \end{array}$$

A partial correctness property is **provable** (notation: $\vdash \{A\} c \{B\}$) if it is derivable by the Hoare rules. In case of (while), A is called a **(loop) invariant**.

Here $A[x \mapsto a]$ denotes the syntactic replacement of every occurrence of x by a in A .

Example 11.2

Proof of $\{A\} \text{ y} := 1 ; c \{B\}$ where

$c := (\text{while } \neg(x=1) \text{ do } (y := y * x; x := x - 1))$

$$A := (\mathbf{x} = i)$$

$B := (\mathbf{y} = i!)$

(on the board)

Structure of the proof:

Example 11.2 (continued)

Here the single propositions are given by:

- ① $C := (x > 0 \implies y * x! = i!)$
- ② $\{A\} y := 1; c \{B\}$
- ③ $\{A\} y := 1 \{C\}$
- ④ $\{C\} c \{B\}$
- ⑤ $\models (A \implies C[y \mapsto 1])$
- ⑥ $\{C[y \mapsto 1]\} y := 1 \{C\}$
- ⑦ $\models (C \implies C)$
- ⑧ $\models (C \implies \neg(\neg(x = 1)) \wedge C)$
- ⑨ $\models (\neg(\neg(x = 1)) \wedge C \implies B)$
- ⑩ $\{ \neg(x = 1) \wedge C \} y := y * x; x := x - 1 \{C\}$
- ⑪ $\models (\neg(x = 1) \wedge C \implies C[x \mapsto x - 1, y \mapsto y * x])$
- ⑫ $\{C[x \mapsto x - 1, y \mapsto y * x]\} y := y * x; x := x - 1 \{C\}$
- ⑬ $\models (C \implies C)$
- ⑭ $\{C[x \mapsto x - 1, y \mapsto y * x]\} y := y * x \{C[x \mapsto x - 1]\}$
- ⑮ $\{C[x \mapsto x - 1]\} x := x - 1 \{C\}$