
Semantics and Verification of Software

Lecture 11: Axiomatic Semantics of WHILE II
(Hoare Logic)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Outline

1 Repetition: Partial Correctness Properties

2 Proof Rules for Partial Correctness

Semantics and Verification of Software Summer Semester 2010 2

Partial Correctness Properties

Validity of property {A} c {B}

For all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

Semantics and Verification of Software Summer Semester 2010 3

Syntax of Assertion Language

Definition (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp

A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Abbreviations:

A1 =⇒ A2 := ¬A1 ∨ A2

∃i.A := ¬(∀i.¬A)
a1 ≥ a2 := a1>a2 ∨ a1=a2

...

Semantics and Verification of Software Summer Semester 2010 4

Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition (Semantics of LExp)

An interpretation is an element of the set
Int := {I | I : LVar → Z}.

The value of an arithmetic expressions with logical variables is given by
the functional

LJ.K : LExp → (Int → (Σ → Z))
where

LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ

LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ

LJiKIσ := I(i) LJa1*a2KIσ := LJa1KIσ ∗ LJa2KIσ

Semantics and Verification of Software Summer Semester 2010 5

Semantics of Assertions

Reminder:
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i.A ∈ Assn

Definition (Semantics of assertions)

Let A ∈ Assn, σ ∈ Σ⊥, and I ∈ Int . The relation “σ satisfies A in I”
(notation: σ |=I A) is inductively defined by:

σ |=I
true

σ |=I a1=a2 if LJa1KIσ = LJa2KIσ

σ |=I a1>a2 if LJa1KIσ > LJa2KIσ

σ |=I ¬A if not σ |=I A

σ |=I A1 ∧ A2 if σ |=I A1 and σ |=I A2

σ |=I A1 ∨ A2 if σ |=I A1 or σ |=I A2

σ |=I ∀i.A if σ |=I[i7→z] A for every z ∈ Z

⊥ |=I A

Furthermore “σ satisfies A” (σ |= A) if σ |=I A for every interpretation
I ∈ Int , and A is called valid (|= A) if σ |= A for every state σ ∈ Σ.

Semantics and Verification of Software Summer Semester 2010 6

Partial Correctness Properties

Definition (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int , we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B

(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ BI).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ BI).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int .

Semantics and Verification of Software Summer Semester 2010 7

Outline

1 Repetition: Partial Correctness Properties

2 Proof Rules for Partial Correctness

Semantics and Verification of Software Summer Semester 2010 8

Hoare Logic I

Goal: syntactic derivation of valid partial correctness properties

Definition 11.1 (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]}x:=a {A}

(seq)
{A} c1 {C} {C} c2 {B}

{A} c1;c2 {B}
(if)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}

{A} if b then c1 else c2 {B}

(while)
{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

Here A[x 7→ a] denotes the syntactic replacement of every occurrence of
x by a in A.

Semantics and Verification of Software Summer Semester 2010 9

Hoare Logic II

Example 11.2

Proof of {A} y:=1;c {B} where
c := (while ¬(x=1) do (y:=y*x; x:=x-1))
A := (x = i)
B := (y = i!)

(on the board)

Structure of the proof:

(seq)
(cons) 4

(asgn)
5 6

2
(cons) 7

(while)
(cons) 11

(seq)
(asgn)

14
(asgn)

15

12 13

10

8 9

3

1

Semantics and Verification of Software Summer Semester 2010 10

Hoare Logic III

Example 11.2 (continued)

Here the single propositions are given by:

0 C := (x > 0 =⇒ y ∗ x! = i!)
1 {A} y := 1;c {B}
2 {A} y := 1 {C}
3 {C} c {B}
4 |= (A =⇒ C[y 7→ 1])
5 {C[y 7→ 1]} y := 1 {C}
6 |= (C =⇒ C)
7 |= (C =⇒ C)
8 {C} c {¬(¬(x = 1)) ∧ C}
9 |= (¬(¬(x = 1)) ∧ C =⇒ B)
10 {¬(x = 1) ∧ C} y := y*x; x := x-1 {C}
11 |= (¬(x = 1) ∧ C =⇒ C[x 7→ x-1, y 7→ y*x])
12 {C[x 7→ x-1, y 7→ y*x]} y := y*x; x := x-1{C}
13 |= (C =⇒ C)
14 {C[x 7→ x-1, y 7→ y*x]} y := y*x{C[x 7→ x-1]}
15 {C[x 7→ x-1]} x := x-1 {C}

Semantics and Verification of Software Summer Semester 2010 11

	Repetition: Partial Correctness Properties
	Proof Rules for Partial Correctness

