

Semantics and Verification of Software

Lecture 12: Axiomatic Semantics of WHILE III (Correctness of Hoare Logic)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw10/>

Summer Semester 2010

- 1 Repetition: Hoare Logic
- 2 Soundness of Hoare Logic
- 3 (In-)Completeness of Hoare Logic

Definition (Partial correctness properties)

Let $A, B \in \text{Assn}$ and $c \in \text{Cmd}$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \implies \mathfrak{C}[c]\sigma \in B^I$).

- $\{A\} c \{B\}$ is called **valid in I** (notation: $\models^I \{A\} c \{B\}$) if $\sigma \models^I \{A\} c \{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[c]A^I \subseteq B^I$).
- $\{A\} c \{B\}$ is called **valid** (notation: $\models \{A\} c \{B\}$) if $\models^I \{A\} c \{B\}$ for every $I \in \text{Int}$.

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The **Hoare rules** are given by

$$\begin{array}{c} (\text{skip}) \frac{}{\{A\} \text{ skip } \{A\}} \qquad \qquad (\text{asgn}) \frac{}{\{A[x \mapsto a]\} x := a \{A\}} \\ (\text{seq}) \frac{\{A\} c_1 \{C\} \quad \{C\} c_2 \{B\}}{\{A\} c_1; c_2 \{B\}} \quad (\text{if}) \frac{\{A \wedge b\} c_1 \{B\} \quad \{A \wedge \neg b\} c_2 \{B\}}{\{A\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{B\}} \\ (\text{while}) \frac{\{A \wedge b\} c \{A\}}{\{A\} \text{ while } b \text{ do } c \{A \wedge \neg b\}} \\ (\text{cons}) \frac{\models (A \implies A') \quad \{A'\} c \{B'\} \quad \models (B' \implies B)}{\{A\} c \{B\}} \end{array}$$

A partial correctness property is **provable** (notation: $\vdash \{A\} c \{B\}$) if it is derivable by the Hoare rules. In case of (while), A is called a **(loop) invariant**.

Here $A[x \mapsto a]$ denotes the syntactic replacement of every occurrence of x by a in A .

- 1 Repetition: Hoare Logic
- 2 Soundness of Hoare Logic
- 3 (In-)Completeness of Hoare Logic

Soundness: no wrong propositions can be derived, i.e., every (syntactically) provable partial correctness property is also (semantically) valid

Soundness: no wrong propositions can be derived, i.e., every (syntactically) provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 12.1 (Substitution lemma)

For every $A \in Assn$, $x \in Var$, $a \in AExp$, $\sigma \in \Sigma$, and $I \in Int$:

$$\sigma \models^I A[x \mapsto a] \iff \sigma[x \mapsto \mathfrak{A}[a]\sigma] \models^I A.$$

Soundness: no wrong propositions can be derived, i.e., every (syntactically) provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 12.1 (Substitution lemma)

For every $A \in Assn$, $x \in Var$, $a \in AExp$, $\sigma \in \Sigma$, and $I \in Int$:

$$\sigma \models^I A[x \mapsto a] \iff \sigma[x \mapsto \mathfrak{A}[a]\sigma] \models^I A.$$

Proof.

by induction over $A \in Assn$ (omitted)

Theorem 12.2 (Soundness of Hoare Logic)

For every partial correctness property $\{A\} c \{B\}$,

$$\vdash \{A\} c \{B\} \implies \models \{A\} c \{B\}.$$

Theorem 12.2 (Soundness of Hoare Logic)

For every partial correctness property $\{A\} c \{B\}$,

$$\vdash \{A\} c \{B\} \implies \models \{A\} c \{B\}.$$

Proof.

Let $\vdash \{A\} c \{B\}$. By induction over the structure of the corresponding proof tree we show that, for every $\sigma \in \Sigma$ and $I \in \text{Int}$ such that $\sigma \models^I A$, $\mathfrak{C}[c]\sigma \models^I B$ (on the board).

(If $\sigma = \perp$, then $\mathfrak{C}[c]\sigma = \perp \models^I B$ holds trivially.)

□

- 1 Repetition: Hoare Logic
- 2 Soundness of Hoare Logic
- 3 (In-)Completeness of Hoare Logic

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable ✓

Completeness: all valid partial correctness properties are
systematically derivable ↗

Soundness: only valid partial correctness properties are provable ✓

Completeness: all valid partial correctness properties are systematically derivable ↗

Theorem 12.3 (Gödel's Incompleteness Theorem)

The set of all valid assertions

$$\{A \in \text{Assn} \mid \models A\}$$

is not recursively enumerable, i.e., there exists no proof system for Assn in which all valid assertions are systematically derivable.

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable ✓

Completeness: all valid partial correctness properties are systematically derivable ↗

Theorem 12.3 (Gödel's Incompleteness Theorem)

The set of all valid assertions

$$\{A \in \text{Assn} \mid \models A\}$$

is not recursively enumerable, i.e., there exists no proof system for Assn in which all valid assertions are systematically derivable.

Proof.

see [Winskel 1996, p. 110 ff]

Corollary 12.4

There is no proof system in which all valid partial correctness properties can be enumerated.

Corollary 12.4

There is no proof system in which all valid partial correctness properties can be enumerated.

Proof.

Given $A \in Assn$, $\models A$ is obviously equivalent to $\{\text{true}\} \text{ skip } \{A\}$. Thus the enumerability of all valid partial correctness properties would imply the enumerability of all valid assertions. □

Corollary 12.4

There is no proof system in which all valid partial correctness properties can be enumerated.

Proof.

Given $A \in Assn$, $\models A$ is obviously equivalent to $\{\text{true}\} \text{skip} \{A\}$. Thus the enumerability of all valid partial correctness properties would imply the enumerability of all valid assertions. □

Remark: alternative proof (using computability theory):
 $\{\text{true}\} c \{\text{false}\}$ is valid iff c does not terminate on any input state. But the set of all non-terminating WHILE statements is not enumerable.