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Partial Correctness Properties

Definition (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} c{B} is called a partial correctness
property with precondition A and postcondition B.

o Given o € X | and [ € Int, we let

o T {A} c{B}

if o =1 A implies €[c]o =! B
(or equivalently: o € Al = ¢€[c]Jo € BY).
o {A} c{B} is called valid in I (notation: =! {A}c{B}) if
o =1 {A} ¢{B} for every o € ¥ (or equivalently: €[c]JA! C BY).
o {A}c{B} is called valid (notation: |= {A}c{B}) if ! {A}c{B}
for every I € Int.
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Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

|

Definition (Hoare Logic)

The Hoare rules are given by

(SKP) Y skcip (A} ey —
(s04) {A}e1 {C} {C}ea {B} i) {ANbye1 {B} {AN—b}ca{B}
{A}cy;e0{B} {A} if b then c¢; else ¢y {B}
e {AND)c{A}

{A}while b do c{A A —b}
FA = A) {A}c{B} £ (B = B)

{A}c{B}
A partial correctness property is provable (notation: - {A} ¢{B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

(cons)

4

Here A[x +— a] denotes the syntactic replacement of every occurrence of
x by a in A.
RWNTH
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© Soundness of Hoare Logic
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Soundness of Hoare Logic I

Soundness: no wrong propositions can be derived, i.e., every
(syntactically) provable partial correctness property is also
(semantically) valid
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Soundness of Hoare Logic I

Soundness: no wrong propositions can be derived, i.e., every
(syntactically) provable partial correctness property is also
(semantically) valid

For the corresponding proof we use:

Lemma 12.1 (Substitution lemma)

For every A € Assn, x € Var, a € AEzp, 0 € X3, and I € Int:
o =l Az — a] <= oz — A[a]o] =L A.
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Soundness of Hoare Logic I

Soundness: no wrong propositions can be derived, i.e., every
(syntactically) provable partial correctness property is also
(semantically) valid

For the corresponding proof we use:

Lemma 12.1 (Substitution lemma)

For every A € Assn, x € Var, a € AEzp, 0 € X3, and I € Int:
o =l Az — a] <= oz — A[a]o] =L A.

by induction over A € Assn (omitted)
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Soundness of Hoare Logic 11

Theorem 12.2 (Soundness of Hoare Logic)

For every partial correctness property {A} c{B},
F{A}c{B} = [E{A}c{B}.
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Soundness of Hoare Logic 11

Theorem 12.2 (Soundness of Hoare Logic)

For every partial correctness property {A} c{B},

F{A}c{B} = {A}c{B}.

Let - {A} c{B}. By induction over the structure of the corresponding
proof tree we show that, for every o € ¥ and I € Int such that o =1 A,
€[cJo =! B (on the board).

(If o = L, then €[cJo = L = B holds trivially.) O
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© (In-)Completeness of Hoare Logic
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Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable v/

Completeness: all valid partial correctness properties are
systematically derivable %
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Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable v/

Completeness: all valid partial correctness properties are
systematically derivable %

Theorem 12.3 (Godel’s Incompleteness Theorem)

The set of all valid assertions
{A € Assn | E A}

s not recursively enumerable, i.e., there exists no proof system for
Assn in which all valid assertions are systematically derivable.
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Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable v/

Completeness: all valid partial correctness properties are
systematically derivable %

Theorem 12.3 (Godel’s Incompleteness Theorem)

The set of all valid assertions
{A € Assn | E A}

s not recursively enumerable, i.e., there exists no proof system for
Assn in which all valid assertions are systematically derivable.

see [Winskel 1996, p. 110 ff]
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Incompleteness of Hoare Logic I1

There is no proof system in which all valid partial correctness
properties can be enumerated.
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Incompleteness of Hoare Logic I1

There is no proof system in which all valid partial correctness
properties can be enumerated.

Given A € Assn, = A is obviously equivalent to {true} skip{A4}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions. ]
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Incompleteness of Hoare Logic I1

There is no proof system in which all valid partial correctness
properties can be enumerated.

Given A € Assn, = A is obviously equivalent to {true} skip{A4}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions. ]

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff ¢ does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.
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