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Partial Correctness Properties

Definition (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int , we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B

(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ BI).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ BI).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int .
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Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]}x:=a {A}

(seq)
{A} c1 {C} {C} c2 {B}

{A} c1;c2 {B}
(if)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}

{A} if b then c1 else c2 {B}

(while)
{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

Here A[x 7→ a] denotes the syntactic replacement of every occurrence of
x by a in A.
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Soundness of Hoare Logic I

Soundness: no wrong propositions can be derived, i.e., every
(syntactically) provable partial correctness property is also
(semantically) valid
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Soundness of Hoare Logic I

Soundness: no wrong propositions can be derived, i.e., every
(syntactically) provable partial correctness property is also
(semantically) valid

For the corresponding proof we use:

Lemma 12.1 (Substitution lemma)

For every A ∈ Assn, x ∈ Var, a ∈ AExp, σ ∈ Σ, and I ∈ Int:

σ |=I A[x 7→ a] ⇐⇒ σ[x 7→ AJaKσ] |=I A.
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Soundness of Hoare Logic I

Soundness: no wrong propositions can be derived, i.e., every
(syntactically) provable partial correctness property is also
(semantically) valid

For the corresponding proof we use:

Lemma 12.1 (Substitution lemma)

For every A ∈ Assn, x ∈ Var, a ∈ AExp, σ ∈ Σ, and I ∈ Int:

σ |=I A[x 7→ a] ⇐⇒ σ[x 7→ AJaKσ] |=I A.

Proof.

by induction over A ∈ Assn (omitted)
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Soundness of Hoare Logic II

Theorem 12.2 (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},
` {A} c {B} =⇒ |= {A} c {B}.
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Soundness of Hoare Logic II

Theorem 12.2 (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},
` {A} c {B} =⇒ |= {A} c {B}.

Proof.

Let ` {A} c {B}. By induction over the structure of the corresponding
proof tree we show that, for every σ ∈ Σ and I ∈ Int such that σ |=I A,
CJcKσ |=I B (on the board).
(If σ = ⊥, then CJcKσ = ⊥ |=I B holds trivially.)
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Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable X

Completeness: all valid partial correctness properties are
systematically derivable  
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Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable X

Completeness: all valid partial correctness properties are
systematically derivable  

Theorem 12.3 (Gödel’s Incompleteness Theorem)

The set of all valid assertions

{A ∈ Assn | |= A}

is not recursively enumerable, i.e., there exists no proof system for

Assn in which all valid assertions are systematically derivable.
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Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable X

Completeness: all valid partial correctness properties are
systematically derivable  

Theorem 12.3 (Gödel’s Incompleteness Theorem)

The set of all valid assertions

{A ∈ Assn | |= A}

is not recursively enumerable, i.e., there exists no proof system for

Assn in which all valid assertions are systematically derivable.

Proof.

see [Winskel 1996, p. 110 ff]
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Incompleteness of Hoare Logic II

Corollary 12.4

There is no proof system in which all valid partial correctness

properties can be enumerated.
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Incompleteness of Hoare Logic II

Corollary 12.4

There is no proof system in which all valid partial correctness

properties can be enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions.
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Incompleteness of Hoare Logic II

Corollary 12.4

There is no proof system in which all valid partial correctness

properties can be enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions.

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff c does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.
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