
Semantics and Verification of Software

Lecture 13: Axiomatic Semantics of WHILE IV
(Relative Completeness and Total Correctness Properties)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Outline

1 Repetition: Correctness of Hoare Logic

2 Relative Completeness of Hoare Logic

3 Total Correctness

Semantics and Verification of Software Summer Semester 2010 2

Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]}x:=a {A}

(seq)
{A} c1 {C} {C} c2 {B}

{A} c1;c2 {B}
(if)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}

{A} if b then c1 else c2 {B}

(while)
{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

Here A[x 7→ a] denotes the syntactic replacement of every occurrence of
x by a in A.

Semantics and Verification of Software Summer Semester 2010 3

Soundness of Hoare Logic

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},
` {A} c {B} =⇒ |= {A} c {B}.

Proof.

Let ` {A} c {B}. By induction over the structure of the corresponding
proof tree we show that, for every σ ∈ Σ and I ∈ Int such that σ |=I A,
CJcKσ |=I B (on the board).
(If σ = ⊥, then CJcKσ = ⊥ |=I B holds trivially.)

Semantics and Verification of Software Summer Semester 2010 4

Incompleteness of Hoare Logic II

Corollary

There is no proof system in which all valid partial correctness

properties can be enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions.

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff c does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.

Semantics and Verification of Software Summer Semester 2010 5

Outline

1 Repetition: Correctness of Hoare Logic

2 Relative Completeness of Hoare Logic

3 Total Correctness

Semantics and Verification of Software Summer Semester 2010 6

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}

since it is based on the validity of implications within Assn

Semantics and Verification of Software Summer Semester 2010 7

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}

since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Semantics and Verification of Software Summer Semester 2010 7

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}

since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

Semantics and Verification of Software Summer Semester 2010 7

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}

since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be systematically derived

Semantics and Verification of Software Summer Semester 2010 7

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}

since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be systematically derived

=⇒ Relative completeness

Semantics and Verification of Software Summer Semester 2010 7

Relative Completeness of Hoare Logic II

Theorem 13.1 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness

property {A} c {B}:

|= {A} c {B} =⇒ ` {A} c {B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

Semantics and Verification of Software Summer Semester 2010 8

Relative Completeness of Hoare Logic II

Theorem 13.1 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness

property {A} c {B}:

|= {A} c {B} =⇒ ` {A} c {B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {A} c1;c2 {B}
has to be derived. This requires an intermediate assertion C ∈ Assn

such that {A} c1 {C} and {C} c2 {B}. How to find it?

Semantics and Verification of Software Summer Semester 2010 8

Weakest Preconditions I

Definition 13.2 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int , the weakest precondition of B

with respect to c under I is defined by:

wpIJc,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.

Semantics and Verification of Software Summer Semester 2010 9

Weakest Preconditions I

Definition 13.2 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int , the weakest precondition of B

with respect to c under I is defined by:

wpIJc,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.

Corollary 13.3

For every c ∈ Cmd, A,B ∈ Assn, and I ∈ Int:

1 |=I {A} c {B} ⇐⇒ AI ⊆ wpIJc,BK

2 If A0 ∈ Assn such that AI
0 = wpIJc,BK for every I ∈ Int, then

|= {A} c {B} ⇐⇒ |= (A =⇒ A0)

Semantics and Verification of Software Summer Semester 2010 9

Weakest Preconditions I

Definition 13.2 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int , the weakest precondition of B

with respect to c under I is defined by:

wpIJc,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.

Corollary 13.3

For every c ∈ Cmd, A,B ∈ Assn, and I ∈ Int:

1 |=I {A} c {B} ⇐⇒ AI ⊆ wpIJc,BK

2 If A0 ∈ Assn such that AI
0 = wpIJc,BK for every I ∈ Int, then

|= {A} c {B} ⇐⇒ |= (A =⇒ A0)

Remark: (2) justifies the notion of weakest precondition: it is implied
by every precondition A which makes {A} c {B} valid

Semantics and Verification of Software Summer Semester 2010 9

Weakest Preconditions II

Definition 13.4 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every c ∈ Cmd and
B ∈ Assn, there exists Ac,B ∈ Assn such that

AI
c,B = wpIJc, BK

for every I ∈ Int .

Semantics and Verification of Software Summer Semester 2010 10

Weakest Preconditions II

Definition 13.4 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every c ∈ Cmd and
B ∈ Assn, there exists Ac,B ∈ Assn such that

AI
c,B = wpIJc, BK

for every I ∈ Int .

Theorem 13.5 (Expressivity of Assn)

Assn is expressive.

Semantics and Verification of Software Summer Semester 2010 10

Weakest Preconditions II

Definition 13.4 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every c ∈ Cmd and
B ∈ Assn, there exists Ac,B ∈ Assn such that

AI
c,B = wpIJc, BK

for every I ∈ Int .

Theorem 13.5 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given c ∈ Cmd and B ∈ Assn, construct Ac,B ∈ Assn with
σ |=I Ac,B ⇐⇒ CJcKσ |=I B (for every σ ∈ Σ⊥, I ∈ Int). For example:

Askip,B := B Ax:=a,B := B[x 7→ a]
Ac1;c2,B := Ac1,Ac2,B

. . .

(for while: “Gödelization” of sequences of intermediate states)

Semantics and Verification of Software Summer Semester 2010 10

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 13.6

For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}

Semantics and Verification of Software Summer Semester 2010 11

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 13.6

For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Semantics and Verification of Software Summer Semester 2010 11

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 13.6

For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 13.1).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ` {A} c {B}.

Semantics and Verification of Software Summer Semester 2010 11

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 13.6

For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 13.1).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ` {A} c {B}.

Lemma 13.6 =⇒ ` {Ac,B} c {B}

Semantics and Verification of Software Summer Semester 2010 11

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 13.6

For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 13.1).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ` {A} c {B}.

Lemma 13.6 =⇒ ` {Ac,B} c {B}
Corollary 13.3 =⇒ |= (A =⇒ Ac,B)

Semantics and Verification of Software Summer Semester 2010 11

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 13.6

For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 13.1).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ` {A} c {B}.

Lemma 13.6 =⇒ ` {Ac,B} c {B}
Corollary 13.3 =⇒ |= (A =⇒ Ac,B)
(cons) rule =⇒ ` {A} c {B}

Semantics and Verification of Software Summer Semester 2010 11

Outline

1 Repetition: Correctness of Hoare Logic

2 Relative Completeness of Hoare Logic

3 Total Correctness

Semantics and Verification of Software Summer Semester 2010 12

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Semantics and Verification of Software Summer Semester 2010 13

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

Semantics and Verification of Software Summer Semester 2010 13

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn

Semantics and Verification of Software Summer Semester 2010 13

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn

Interpretation:

Validity of property {A} c {⇓B}

For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

Semantics and Verification of Software Summer Semester 2010 13

Semantics of Total Correctness Properties

Definition 13.7 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

Semantics and Verification of Software Summer Semester 2010 14

Semantics of Total Correctness Properties

Definition 13.7 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

{A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if
σ |=I {A} c {⇓B} for every σ ∈ Σ.

Semantics and Verification of Software Summer Semester 2010 14

Semantics of Total Correctness Properties

Definition 13.7 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

{A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if
σ |=I {A} c {⇓B} for every σ ∈ Σ.

{A} c {⇓B} is called valid (notation: |= {A} c {B}) if
|=I {A} c {⇓B} for every I ∈ Int .

Semantics and Verification of Software Summer Semester 2010 14

Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 13.8 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)
{A} skip{⇓A}

(asgn)
{A[x 7→ a]} x := a {⇓A}

(seq)
{A} c1 {⇓C} {C} c2 {⇓B}

{A} c1;c2 {⇓B}
(if)

{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}

{A} if b then c1 else c2 {⇓B}

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

(cons)
|= (A =⇒ A′) {A′} c {⇓B′} |= (B′ =⇒ B)

{A} c {⇓B}

where i ∈ LVar , |= (i ≥ 0 ∧ A(i + 1) =⇒ b), and |= (A(0) =⇒ ¬b).
A total correctness property is provable (notation: ` {A} c {⇓B}) if it is
derivable by the Hoare rules. In case of (while), A(i) is called a (loop)
invariant.

Semantics and Verification of Software Summer Semester 2010 15

Proving Total Correctness II

In rule

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Semantics and Verification of Software Summer Semester 2010 16

Proving Total Correctness II

In rule

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Semantics and Verification of Software Summer Semester 2010 16

Proving Total Correctness II

In rule

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Execution terminated
=⇒ A(0) holds
=⇒ execution condition b false

Thus: |= (A(0) =⇒ ¬b)

Semantics and Verification of Software Summer Semester 2010 16

Proving Total Correctness II

In rule

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Execution terminated
=⇒ A(0) holds
=⇒ execution condition b false

Thus: |= (A(0) =⇒ ¬b)

Loop to be traversed i + 1 times (i ≥ 0)
=⇒ A(i + 1) holds
=⇒ execution condition b true

Thus: |= (i ≥ 0 ∧ A(i + 1) =⇒ b), and i + 1 decreased to i after
execution of c

Semantics and Verification of Software Summer Semester 2010 16

Total Correctness of Factorial Program

Example 13.9

Proof of {A} y:=1;c {⇓B} where

A := (x > 0 ∧ x = i)
c := while ¬(x=1) do (y:=y*x; x:=x-1)

B := (y = i!)

(on the board)

Semantics and Verification of Software Summer Semester 2010 17

	Repetition: Correctness of Hoare Logic
	Relative Completeness of Hoare Logic
	Total Correctness

