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Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]}x:=a {A}

(seq)
{A} c1 {C} {C} c2 {B}

{A} c1;c2 {B}
(if)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}

{A} if b then c1 else c2 {B}

(while)
{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

Here A[x 7→ a] denotes the syntactic replacement of every occurrence of
x by a in A.
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Soundness of Hoare Logic

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},
` {A} c {B} =⇒ |= {A} c {B}.

Proof.

Let ` {A} c {B}. By induction over the structure of the corresponding
proof tree we show that, for every σ ∈ Σ and I ∈ Int such that σ |=I A,
CJcKσ |=I B (on the board).
(If σ = ⊥, then CJcKσ = ⊥ |=I B holds trivially.)
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Incompleteness of Hoare Logic II

Corollary

There is no proof system in which all valid partial correctness

properties can be enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions.

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff c does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.

Semantics and Verification of Software Summer Semester 2010 5



Outline

1 Repetition: Correctness of Hoare Logic

2 Relative Completeness of Hoare Logic

3 Total Correctness

Semantics and Verification of Software Summer Semester 2010 6



Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}

since it is based on the validity of implications within Assn
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Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

(cons)
|= (A =⇒ A′) {A′} c {B′} |= (B′ =⇒ B)

{A} c {B}

since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be systematically derived

=⇒ Relative completeness
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Relative Completeness of Hoare Logic II

Theorem 13.1 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness

property {A} c {B}:

|= {A} c {B} =⇒ ` {A} c {B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.
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Relative Completeness of Hoare Logic II

Theorem 13.1 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness

property {A} c {B}:

|= {A} c {B} =⇒ ` {A} c {B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {A} c1;c2 {B}
has to be derived. This requires an intermediate assertion C ∈ Assn

such that {A} c1 {C} and {C} c2 {B}. How to find it?
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Weakest Preconditions I

Definition 13.2 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int , the weakest precondition of B

with respect to c under I is defined by:

wpIJc,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.
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Weakest Preconditions I

Definition 13.2 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int , the weakest precondition of B

with respect to c under I is defined by:

wpIJc,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.

Corollary 13.3

For every c ∈ Cmd, A,B ∈ Assn, and I ∈ Int:

1 |=I {A} c {B} ⇐⇒ AI ⊆ wpIJc,BK

2 If A0 ∈ Assn such that AI
0 = wpIJc,BK for every I ∈ Int, then

|= {A} c {B} ⇐⇒ |= (A =⇒ A0)
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Weakest Preconditions I

Definition 13.2 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int , the weakest precondition of B

with respect to c under I is defined by:

wpIJc,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.

Corollary 13.3

For every c ∈ Cmd, A,B ∈ Assn, and I ∈ Int:

1 |=I {A} c {B} ⇐⇒ AI ⊆ wpIJc,BK

2 If A0 ∈ Assn such that AI
0 = wpIJc,BK for every I ∈ Int, then

|= {A} c {B} ⇐⇒ |= (A =⇒ A0)

Remark: (2) justifies the notion of weakest precondition: it is implied
by every precondition A which makes {A} c {B} valid
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Weakest Preconditions II

Definition 13.4 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every c ∈ Cmd and
B ∈ Assn, there exists Ac,B ∈ Assn such that

AI
c,B = wpIJc, BK

for every I ∈ Int .
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Weakest Preconditions II

Definition 13.4 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every c ∈ Cmd and
B ∈ Assn, there exists Ac,B ∈ Assn such that

AI
c,B = wpIJc, BK

for every I ∈ Int .

Theorem 13.5 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given c ∈ Cmd and B ∈ Assn, construct Ac,B ∈ Assn with
σ |=I Ac,B ⇐⇒ CJcKσ |=I B (for every σ ∈ Σ⊥, I ∈ Int). For example:

Askip,B := B Ax:=a,B := B[x 7→ a]
Ac1;c2,B := Ac1,Ac2,B

. . .

(for while: “Gödelization” of sequences of intermediate states)
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Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 13.6

For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}
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The following lemma shows that weakest preconditions are “derivable”:

Lemma 13.6

For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}

Proof.

by structural induction over c (omitted)
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Lemma 13.6

For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 13.1).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ` {A} c {B}.
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For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 13.1).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ` {A} c {B}.

Lemma 13.6 =⇒ ` {Ac,B} c {B}
Corollary 13.3 =⇒ |= (A =⇒ Ac,B)
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Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 13.6

For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 13.1).

We have to show that Hoare Logic is relatively complete, i.e., that
|= {A} c {B} =⇒ ` {A} c {B}.

Lemma 13.6 =⇒ ` {Ac,B} c {B}
Corollary 13.3 =⇒ |= (A =⇒ Ac,B)
(cons) rule =⇒ ` {A} c {B}
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Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program
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Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn

Interpretation:

Validity of property {A} c {⇓B}

For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.
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Semantics of Total Correctness Properties

Definition 13.7 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.
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Semantics of Total Correctness Properties

Definition 13.7 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

{A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if
σ |=I {A} c {⇓B} for every σ ∈ Σ.
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Semantics of Total Correctness Properties

Definition 13.7 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

{A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if
σ |=I {A} c {⇓B} for every σ ∈ Σ.

{A} c {⇓B} is called valid (notation: |= {A} c {B}) if
|=I {A} c {⇓B} for every I ∈ Int .
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Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 13.8 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)
{A} skip{⇓A}

(asgn)
{A[x 7→ a]} x := a {⇓A}

(seq)
{A} c1 {⇓C} {C} c2 {⇓B}

{A} c1;c2 {⇓B}
(if)

{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}

{A} if b then c1 else c2 {⇓B}

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

(cons)
|= (A =⇒ A′) {A′} c {⇓B′} |= (B′ =⇒ B)

{A} c {⇓B}

where i ∈ LVar , |= (i ≥ 0 ∧ A(i + 1) =⇒ b), and |= (A(0) =⇒ ¬b).
A total correctness property is provable (notation: ` {A} c {⇓B}) if it is
derivable by the Hoare rules. In case of (while), A(i) is called a (loop)
invariant.
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Proving Total Correctness II

In rule

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .
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Proving Total Correctness II

In rule

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Execution terminated
=⇒ A(0) holds
=⇒ execution condition b false

Thus: |= (A(0) =⇒ ¬b)
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Proving Total Correctness II

In rule

(while)
{i ≥ 0 ∧ A(i + 1)} c {⇓A(i)}

{∃i.i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically
depends on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Execution terminated
=⇒ A(0) holds
=⇒ execution condition b false

Thus: |= (A(0) =⇒ ¬b)

Loop to be traversed i + 1 times (i ≥ 0)
=⇒ A(i + 1) holds
=⇒ execution condition b true

Thus: |= (i ≥ 0 ∧ A(i + 1) =⇒ b), and i + 1 decreased to i after
execution of c
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Total Correctness of Factorial Program

Example 13.9

Proof of {A} y:=1;c {⇓B} where

A := (x > 0 ∧ x = i)
c := while ¬(x=1) do (y:=y*x; x:=x-1)

B := (y = i!)

(on the board)
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