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Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

|

Definition (Hoare Logic)

The Hoare rules are given by

(SKP) Y skcip (A} ey —
(s04) {A}e1 {C} {C}ea {B} i) {ANbye1 {B} {AN—b}ca{B}
{A}cy;e0{B} {A} if b then c¢; else ¢y {B}
e {AND)c{A}

{A}while b do c{A A —b}
FA = A) {A}c{B} £ (B = B)

{A}c{B}
A partial correctness property is provable (notation: - {A} ¢{B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

(cons)

4

Here A[x +— a] denotes the syntactic replacement of every occurrence of
x by a in A.
RWNTH
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Soundness of Hoare Logic

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c{B},

F{A}e{B} = [ {A}c{B).

Let - {A} ¢{B}. By induction over the structure of the corresponding
proof tree we show that, for every o € ¥ and I € Int such that o =1 A,
€[cJo E! B (on the board).

(If o = L, then €[cJo = L =! B holds trivially.) O
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Incompleteness of Hoare Logic I1

There is no proof system in which all valid partial correctness
properties can be enumerated.

Given A € Assn, = A is obviously equivalent to {true} skip{A4}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions. ]

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff ¢ does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.
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Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A) {A}e{B'} E(B" = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

® The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a

given assertion is valid, then all valid partial correctness properties
can be systematically derived

—> Relative completeness
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Relative Completeness of Hoare Logic 11

Theorem 13.1 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness
property {A} c{B}:

= {Ale{B} = F{A}c{B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {4} c1;c2{B}
has to be derived. This requires an intermediate assertion C' € Assn
such that {A} ¢; {C} and {C} c2 {B}. How to find it?
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Weakest Preconditions I

Definition 13.2 (Weakest precondition)

Given ¢ € OUmd, B € Assn and I € Int, the weakest precondition of B
with respect to ¢ under I is defined by:

wp’[e, B] := {0 € ¥ | ¢[]o E! B}.

For every c € Cmd, A, B € Assn, and I € Int:
Q@ F {A}c{B} — Al Cwpl[c, B]
Q If Ag € Assn such that AL = wp![e, B] for every I € Int, then
F{A}c{B} <<= EMA = A)

Remark: (2) justifies the notion of weakest precondition: it is implied
by every precondition A which makes {A}c{B} valid
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Weakest Preconditions 11

Definition 13.4 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists A. p € Assn such that

Al g = wp'[c, B]
for every I € Int.

Theorem 13.5 (Expressivity of Assn)

Assn is expressive.

Proof

(idea; see [Winskel 1996, p. 103 ff for details])
Given ¢ € Omd and B € Assn, construct A, p € Assn with
o=l Acp < €[cJo E! B (for every 0 € X, I € Int). For example:

Asklp,B =B Aa::=a B ‘= B[CE = (L]
AC1 ;e0,B = AC1, Acy.B
(for while: “Godelization” of sequences of mtermedlate states) O
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Relative Completeness of Hoare Logic 11

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)

Proof (Cook’s Completeness Theorem 13.1).

We have to show that Hoare Logic is relatively complete, i.e., that
={Atce{B} = F{A}c{B}
o Lemma 13.6 = F {A.p}c{B}

e Corollary 13.3 = (A = A.B)
o (cons) rule = F{A}c{B}
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Total Correctness

@ Observation: partial correctness properties only speak about
terminating computations of a given program

@ Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

o Consider total correctness properties of the form
{A}c{U B}

where ¢ € Cmd and A, B € Assn

o Interpretation:

Validity of property {A}c{{ B}

For all states 0 € ¥ which satisfy A:
the execution of ¢ in o terminates and yields a state which satisfies B.
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Semantics of Total Correctness Properties

Definition 13.7 (Semantics of total correctness properties)

Let A, B € Assn and ¢ € Omd.

o {A}c{| B} is called valid in 0 € ¥ and I € Int (notation:
o = {AYc{UB}) if 0 ! A implies that €[c]o # L and
¢lcJo = B.

o {A}c{U B} is called valid in I € Int (notation: = {A}c{ B}) if
o = {A} c{| B} for every o € ¥.

o {A}c{| B} is called valid (notation: = {A}c{B}) if
=1 {A} ¢ {§ B} for every I € Int.
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Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 13.8 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)

{A} skip{UA} o) Al — a} o = a (VA

(A} (4O} (Cher (4B} {ARW} i (U B} (AR b (U B)
{4} c1;e2 {U B} {A} if b then ¢; else ¢ {{ B}
{i>0NAGE+1)}c{VA®@%)}

{3i.i > 0A A(7)} while b do ¢ {{ A(0)}

FA = A4) {A}c{yB} = (B = B)

{A}c{U B}
where i € LVar, = (1 > 0N A(i +1) = b), and = (A(0) = —b).
A total correctness property is provable (notation: - {A} ¢ {| B}) if it is

derivable by the Hoare rules. In case of (while), A(7) is called a (loop)
invariant.

(seq)

(while)

(cons)
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Proving Total Correctness 11

o In rule
{i>0NA@G+1)}e{JA®G)}

(i) 15,5 > 0 A A(3)} while b do ¢ {J A(0))

the notation A(7) indicates that assertion A parametrically
depends on the value of the logical variable ¢ € LVar.
o Idea: ¢ represents the remaining number of loop iterations
o Execution terminated
—> A(0) holds
— execution condition b false
Thus: = (A(0) = —b)
@ Loop to be traversed i + 1 times (¢ > 0)
—> A(i+ 1) holds
—> execution condition b true

Thus: = (i >0AA(i+1) = b), and i + 1 decreased to i after
execution of ¢
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Total Correctness of Factorial Program

Example 13.9

Proof of {A}y:=1;¢{| B} where
A=x>0Ax=1)
¢ :=while —(x=1) do (y:=y*x; x:=x-1)
B := (y=1!)

(on the board)
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