Semantics and Verification of Software

Lecture 13: Axiomatic Semantics of WHILE IV
(Relative Completeness and Total Correctness Properties)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

© Repetition: Correctness of Hoare Logic

Rm Semantics and Verification of Software Summer Semester 2010



Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

|

Definition (Hoare Logic)

The Hoare rules are given by

(SKP) Y skcip (A} ey —
(s04) {A}e1 {C} {C}ea {B} i) {ANbye1 {B} {AN—b}ca{B}
{A}cy;e0{B} {A} if b then c¢; else ¢y {B}
e {AND)c{A}

{A}while b do c{A A —b}
FA = A) {A}c{B} £ (B = B)

{A}c{B}
A partial correctness property is provable (notation: - {A} ¢{B}) if it
is derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

(cons)

4

Here A[x +— a] denotes the syntactic replacement of every occurrence of
x by a in A.
RWNTH

Semantics and Verification of Software Summer Semester 2010




Soundness of Hoare Logic

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c{B},

F{A}e{B} = [ {A}c{B).

Let - {A} ¢{B}. By induction over the structure of the corresponding
proof tree we show that, for every o € ¥ and I € Int such that o =1 A,
€[cJo E! B (on the board).

(If o = L, then €[cJo = L =! B holds trivially.) O

m Semantics and Verification of Software Summer Semester 2010



Incompleteness of Hoare Logic I1

There is no proof system in which all valid partial correctness
properties can be enumerated.

Given A € Assn, = A is obviously equivalent to {true} skip{A4}. Thus
the enumerability of all valid partial correctness properties would imply
the enumerability of all valid assertions. ]

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff ¢ does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.

m Semantics and Verification of Software Summer Semester 2010



© Relative Completeness of Hoare Logic

Rm Semantics and Verification of Software Summer Semester 2010



Relative Completeness of Hoare Logic I

o We will see: actual reason of incompleteness is rule

F(A = A) {A}e{B'} E(B" = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

® The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a

given assertion is valid, then all valid partial correctness properties
can be systematically derived

—> Relative completeness

Rm Semantics and Verification of Software Summer Semester 2010



Relative Completeness of Hoare Logic 11

Theorem 13.1 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every partial correctness
property {A} c{B}:

= {Ale{B} = F{A}c{B}.

Thus: if we know that a partial correctness property is valid, then we
know that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {4} c1;c2{B}
has to be derived. This requires an intermediate assertion C' € Assn
such that {A} ¢; {C} and {C} c2 {B}. How to find it?

m' Semantics and Verification of Software Summer Semester 2010



Weakest Preconditions I

Definition 13.2 (Weakest precondition)

Given ¢ € OUmd, B € Assn and I € Int, the weakest precondition of B
with respect to ¢ under I is defined by:

wp’[e, B] := {0 € ¥ | ¢[]o E! B}.

For every c € Cmd, A, B € Assn, and I € Int:
Q@ F {A}c{B} — Al Cwpl[c, B]
Q If Ag € Assn such that AL = wp![e, B] for every I € Int, then
F{A}c{B} <<= EMA = A)

Remark: (2) justifies the notion of weakest precondition: it is implied
by every precondition A which makes {A}c{B} valid

m' Semantics and Verification of Software Summer Semester 2010



Weakest Preconditions 11

Definition 13.4 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists A. p € Assn such that

Al g = wp'[c, B]
for every I € Int.

Theorem 13.5 (Expressivity of Assn)

Assn is expressive.

Proof

(idea; see [Winskel 1996, p. 103 ff for details])
Given ¢ € Omd and B € Assn, construct A, p € Assn with
o=l Acp < €[cJo E! B (for every 0 € X, I € Int). For example:

Asklp,B =B Aa::=a B ‘= B[CE = (L]
AC1 ;e0,B = AC1, Acy.B
(for while: “Godelization” of sequences of mtermedlate states) O

m' Semantics and Verification of Software Summer Semester 2010



Relative Completeness of Hoare Logic 11

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{A.B}c{B}

by structural induction over ¢ (omitted)

Proof (Cook’s Completeness Theorem 13.1).

We have to show that Hoare Logic is relatively complete, i.e., that
={Atce{B} = F{A}c{B}
o Lemma 13.6 = F {A.p}c{B}

e Corollary 13.3 = (A = A.B)
o (cons) rule = F{A}c{B}

m' Semantics and Verification of Software Summer Semester 2010



© Total Correctness

Rm Semantics and Verification of Software Summer Semester 2010



Total Correctness

@ Observation: partial correctness properties only speak about
terminating computations of a given program

@ Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

o Consider total correctness properties of the form
{A}c{U B}

where ¢ € Cmd and A, B € Assn

o Interpretation:

Validity of property {A}c{{ B}

For all states 0 € ¥ which satisfy A:
the execution of ¢ in o terminates and yields a state which satisfies B.

m' Semantics and Verification of Software Summer Semester 2010 13



Semantics of Total Correctness Properties

Definition 13.7 (Semantics of total correctness properties)

Let A, B € Assn and ¢ € Omd.

o {A}c{| B} is called valid in 0 € ¥ and I € Int (notation:
o = {AYc{UB}) if 0 ! A implies that €[c]o # L and
¢lcJo = B.

o {A}c{U B} is called valid in I € Int (notation: = {A}c{ B}) if
o = {A} c{| B} for every o € ¥.

o {A}c{| B} is called valid (notation: = {A}c{B}) if
=1 {A} ¢ {§ B} for every I € Int.

m Semantics and Verification of Software Summer Semester 2010 14



Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 13.8 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)

{A} skip{UA} o) Al — a} o = a (VA

(A} (4O} (Cher (4B} {ARW} i (U B} (AR b (U B)
{4} c1;e2 {U B} {A} if b then ¢; else ¢ {{ B}
{i>0NAGE+1)}c{VA®@%)}

{3i.i > 0A A(7)} while b do ¢ {{ A(0)}

FA = A4) {A}c{yB} = (B = B)

{A}c{U B}
where i € LVar, = (1 > 0N A(i +1) = b), and = (A(0) = —b).
A total correctness property is provable (notation: - {A} ¢ {| B}) if it is

derivable by the Hoare rules. In case of (while), A(7) is called a (loop)
invariant.

(seq)

(while)

(cons)

m' Semantics and Verification of Software Summer Semester 2010



Proving Total Correctness 11

o In rule
{i>0NA@G+1)}e{JA®G)}

(i) 15,5 > 0 A A(3)} while b do ¢ {J A(0))

the notation A(7) indicates that assertion A parametrically
depends on the value of the logical variable ¢ € LVar.
o Idea: ¢ represents the remaining number of loop iterations
o Execution terminated
—> A(0) holds
— execution condition b false
Thus: = (A(0) = —b)
@ Loop to be traversed i + 1 times (¢ > 0)
—> A(i+ 1) holds
—> execution condition b true

Thus: = (i >0AA(i+1) = b), and i + 1 decreased to i after
execution of ¢

m' Semantics and Verification of Software Summer Semester 2010 16



Total Correctness of Factorial Program

Example 13.9

Proof of {A}y:=1;¢{| B} where
A=x>0Ax=1)
¢ :=while —(x=1) do (y:=y*x; x:=x-1)
B := (y=1!)

(on the board)

m' Semantics and Verification of Software Summer Semester 2010 17



	Repetition: Correctness of Hoare Logic
	Relative Completeness of Hoare Logic
	Total Correctness

