Semantics and Verification of Software

Lecture 14: Axiomatic Semantics of WHILE V
(Total Correctness and Semantic Equivalence)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Repetition: Total Correctness Properties
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Semantics of Total Correctness Properties

Definition (Semantics of total correctness properties)
Let A, B € Assn and ¢ € Omd.

o {A}c{| B} is called valid in 0 € ¥ and I € Int (notation:
o = {AYc{UB}) if 0 ! A implies that €[c]o # L and
¢[Jo = B.
o {A}c{U B} is called valid in I € Int (notation: = {A}c{ B}) if
o =l {A} c{| B} for every o € ¥.
o {A}c{| B} is called valid (notation: = {A}c{B}) if
=1 {A} ¢ { B} for every I € Int.

m Semantics and Verification of Software Summer Semester 2010



Proving Total Correctness

Goal: syntactic derivation of valid total correctness properties

Definition (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)

{A} skip{UA} o) Al — a} o = a (VA

(A} (4O} (Cher (4B} {ARW} i (U B} (AR b (U B)
{4} c1;e2 {U B} {A} if b then ¢; else ¢ {{ B}
{i>0NAGE+1)}c{VA®@%)}

{3i.i > 0A A(7)} while b do ¢ {{ A(0)}

FA = A4) {A}c{yB} = (B = B)

{A}c{U B}
where i € LVar, = (1 > 0N A(i +1) = b), and = (A(0) = —b).
A total correctness property is provable (notation: - {A} ¢ {| B}) if it is

derivable by the Hoare rules. In case of (while), A(7) is called a (loop)
invariant.

(seq)

(while)

(cons)
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© Soundness and Completeness of Total Correctness
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Soundness

In analogy to Theorem 12.2 we can show that the Hoare Logic for total
correctness properties is also sound:

For every total correctness property {A} c{{ B},

F{A}c{UB} = = {A}c{{B}.

again by structural induction over the derivation tree of - {A} ¢ {{ B}
(only (while) case; on the board) O
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Relative Completeness

Also the counterpart to Cook’s Completeness Theorem 13.1 applies:

Theorem 14.2 (Completeness)

The Hoare Logic for total correctness properties is relatively complete,
i.e., for every {A} c{| B}:

F{A}c{ B} = {A}c{UB}.

omitted
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© Equivalence of Axiomatic and Operational /Denotational Semantics
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Operational /Denotational Equivalence

Def. 4.1: O[.] : Cmd — (X --» X) given by
Ole)(o) =0’ < (c,0) — o’
Def. 4.2: Two statements c1,co € Cmd are called operationally

equivalent (notation: ¢; ~ ¢g) if

D[[Cl]] = D[[CQ]].

Theorem 9.1: For every ¢ € Cmd,

Ol = ¢[¢],

ie., O[] = C[].
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Axiomatic Equivalence 1

In the axiomatic semantics, two statements have to be considered
equivalent if they are indistinguishable w.r.t. partial correctness
properties:

Definition 14.3 (Axiomatic equivalence)

Two statements ¢y, co € Cmd are called axiomatically equivalent
(notation: ¢; = ¢g) if, for all assertions A, B € Assn,

={A}a{B} < {A}a{B}.
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Axiomatic Equivalence 11

Example 14.4

We show that
while b do ¢ ~ if b then (c;while b do ¢) else skip
(cf. Lemma 5.1). Let A, B € Assn:
= {A}while b do ¢{B}
< F {A}while bdo ¢c{B} (Theorem 12.2,13.1)
<= ex. C € Assn such that = (4 = C),E(CA-b = B),
F {C}while b do c{C A —b} (rule (cons))
<= ex. C € Assn such that = (A = C),F(CA-b = B),
F{C Ab}c{C} (rule (while))
<= ex. C € Assn such that = (4 = C),E(CA-b = B),
F{C A b} c;while b do c{C A —b} (rule (seq)),
F{C A -b} skip{C A —=b} (rule (skip))
ex. C € Assn such that (A = C),E= (CA-b = B),
F {C} if b then (c;while b do c) else skip{C A =b} (rule (if))
F{A}if b then (c;while b do ¢) else skip{B} (rule (cons))
= {A}if b then (c;while b do c) else skip{B}
(Theorem 12.2, 13.1)

!

9l
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Axiomatic Equivalence III

Aziomatic and denotational/operational equivalence coincide, i.e., for
all ¢1,c0 € Cmd,
Cl1 R Cy <= C1 ~ Cy.

on the board O
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@ Summary: Axiomatic Semantics
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Summary: Axiomatic Semantics

o Formalized by partial/total correctness properties
@ Inductively defined by Hoare Logic proof rules

@ Technically involved (especially loop invariants)
—> machine support (proof assistants) indispensable for larger
programs

e Equivalence of axiomatic and operational /denotational semantics

@ Software engineering aspect: integrated development of program
and proof (cf. assertions in Java)
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