
Semantics and Verification of Software

Lecture 15: Semantics of Blocks and Procedures

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Outline

1 Summary: Axiomatic Semantics

2 Extension by Blocks and Procedures

3 Operational Semantics of Blocks and Procedures

Semantics and Verification of Software Summer Semester 2010 2

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Semantics and Verification of Software Summer Semester 2010 3

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Semantics and Verification of Software Summer Semester 2010 3

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
=⇒ machine support (proof assistants) indispensable for larger
programs

Semantics and Verification of Software Summer Semester 2010 3

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
=⇒ machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

Semantics and Verification of Software Summer Semester 2010 3

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
=⇒ machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

Software engineering aspect: integrated development of program
and proof (cf. assertions in Java)

Semantics and Verification of Software Summer Semester 2010 3

Outline

1 Summary: Axiomatic Semantics

2 Extension by Blocks and Procedures

3 Operational Semantics of Blocks and Procedures

Semantics and Verification of Software Summer Semester 2010 4

Blocks and Procedures

Extension of WHILE by blocks with (local) variables and
(recursive) procedures

Semantics and Verification of Software Summer Semester 2010 5

Blocks and Procedures

Extension of WHILE by blocks with (local) variables and
(recursive) procedures

Involves new semantic concepts:

variable und procedure environments
locations (memory addresses) and stores (memory states)

Semantics and Verification of Software Summer Semester 2010 5

Blocks and Procedures

Extension of WHILE by blocks with (local) variables and
(recursive) procedures

Involves new semantic concepts:

variable und procedure environments
locations (memory addresses) and stores (memory states)

Important: scope of variable and procedure identifiers

static scoping: scope of identifier = declaration environment
(here)

dynamic scoping: scope of identifier = calling environment
(old Algol/Lisp dialects)

Semantics and Verification of Software Summer Semester 2010 5

Static and Dynamic Scoping

Example 15.1

begin

var x; var y;

proc P is y := x;

x := 1;

begin

var x;

x := 2;

call P

end

end

Semantics and Verification of Software Summer Semester 2010 6

Static and Dynamic Scoping

Example 15.1

begin

var x; var y;

proc P is y := x;

x := 1;

begin

var x;

x := 2;

call P

end

end

static scoping =⇒ y = 1

Semantics and Verification of Software Summer Semester 2010 6

Static and Dynamic Scoping

Example 15.1

begin

var x; var y;

proc P is y := x;

x := 1;

begin

var x;

x := 2;

call P

end

end

static scoping =⇒ y = 1
dynamic scoping =⇒ y = 2

Semantics and Verification of Software Summer Semester 2010 6

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P

Procedure declarations PDec p

Variable declarations VDec v

Commands (statements) Cmd c

Semantics and Verification of Software Summer Semester 2010 7

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P

Procedure declarations PDec p

Variable declarations VDec v

Commands (statements) Cmd c

Context-free grammar:

p ::= proc P is c;p | ε ∈ PDec

v ::= var x;v | ε ∈ VDec

c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c |
call P | begin v p c end ∈ Cmd

Semantics and Verification of Software Summer Semester 2010 7

Outline

1 Summary: Axiomatic Semantics

2 Extension by Blocks and Procedures

3 Operational Semantics of Blocks and Procedures

Semantics and Verification of Software Summer Semester 2010 8

Operational Semantics I

So far: states Σ = {σ | σ : Var → Z}

Semantics and Verification of Software Summer Semester 2010 9

Operational Semantics I

So far: states Σ = {σ | σ : Var → Z}

Now: explicit control over all (nested) instances of a variable:

variable environments VEnv := {ρ | ρ : Var 99K Loc}
(memory) locations Loc := N

stores Sto := {σ | σ : Loc 99K Z}
(partial function to maintain allocation information)

Semantics and Verification of Software Summer Semester 2010 9

Operational Semantics I

So far: states Σ = {σ | σ : Var → Z}

Now: explicit control over all (nested) instances of a variable:

variable environments VEnv := {ρ | ρ : Var 99K Loc}
(memory) locations Loc := N

stores Sto := {σ | σ : Loc 99K Z}
(partial function to maintain allocation information)

=⇒ Two-level access to a variable x ∈ Var :
1 determine current memory location of x:

l := ρ(x)

2 reading/writing access to σ at position l

Semantics and Verification of Software Summer Semester 2010 9

Operational Semantics I

So far: states Σ = {σ | σ : Var → Z}

Now: explicit control over all (nested) instances of a variable:

variable environments VEnv := {ρ | ρ : Var 99K Loc}
(memory) locations Loc := N

stores Sto := {σ | σ : Loc 99K Z}
(partial function to maintain allocation information)

=⇒ Two-level access to a variable x ∈ Var :
1 determine current memory location of x:

l := ρ(x)

2 reading/writing access to σ at position l

Thus: previous state information represented as σ ◦ ρ

Semantics and Verification of Software Summer Semester 2010 9

Operational Semantics II

Effect of procedure call determined by its body statement and
variable and procedure environment of its declaration:

PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}

denotes the set of procedure environments

Semantics and Verification of Software Summer Semester 2010 10

Operational Semantics II

Effect of procedure call determined by its body statement and
variable and procedure environment of its declaration:

PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}

denotes the set of procedure environments

Effect of declaration: update of environment

updvJ.K : VDec × VEnv × Sto → VEnv × Sto

updvJvar x;vK(ρ, σ) := updvJvK(ρ[x 7→ lx], σ[lx 7→ 0])
updvJεK(ρ, σ) := (ρ, σ)

updpJ.K : PDec × VEnv × PEnv → PEnv

updpJproc P is c;pK(ρ, π) := updpJpK(ρ, π[P 7→ (c, ρ, π)])
updpJεK(ρ, π) := π

where lx := min{l ∈ N | σ(l) = ⊥}

Semantics and Verification of Software Summer Semester 2010 10

Execution Relation I

Definition 15.2 (Execution relation)

For c ∈ Cmd , σ, σ′ ∈ Sto, ρ ∈ VEnv , and π ∈ PEnv , the execution
relation (ρ, π) ` 〈c, σ〉 → σ′ is defined by the following rules:

(skip)
(ρ, π) ` 〈skip, σ〉 → σ

(asgn)
〈a, σ ◦ ρ〉 → z

(ρ, π) ` 〈x := a, σ〉 → σ[ρ(x) 7→ z]

(seq)
(ρ, π) ` 〈c1, σ〉 → σ′ (ρ, π) ` 〈c2, σ

′〉 → σ′′

(ρ, π) ` 〈c1;c2, σ〉 → σ′′

(if-t)
〈b, σ ◦ ρ〉 → true (ρ, π) ` 〈c1, σ〉 → σ′

(ρ, π) ` 〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ ◦ ρ〉 → false (ρ, π) ` 〈c2, σ〉 → σ′

(ρ, π) ` 〈if b then c1 else c2, σ〉 → σ′

Semantics and Verification of Software Summer Semester 2010 11

Execution Relation II

Definition 15.2 (Execution relation; continued)

(wh-f)
〈b, σ ◦ ρ〉 → false

(ρ, π) ` 〈while b do c, σ〉 → σ

(wh-t)
〈b, σ ◦ ρ〉→ true (ρ, π) ` 〈c, σ〉→σ′ (ρ, π) ` 〈while b do c, σ′〉→σ′′

(ρ, π) ` 〈while b do c, σ〉 → σ′′

(call)
(ρ′, π′[P 7→ (c, ρ′, π′)]) ` 〈c, σ〉 → σ′

(ρ, π) ` 〈call P, σ〉 → σ′
if π(P) = (c, ρ′, π′)

(block)
updvJvK(ρ, σ) = (ρ′, σ′) (ρ′, updpJpK(ρ′, π)) ` 〈c, σ′〉 → σ′′

(ρ, π) ` 〈begin v p c end, σ〉 → σ′′

Semantics and Verification of Software Summer Semester 2010 12

Execution Relation III

Remarks about rules (call) and (block):

Static scoping is modelled in (call) by using the environments ρ′

and π′ (as determined in (block)) from the declaration site of
procedure P (and not ρ and π from the calling site)

In (call), the procedure environment associated with procedure P

is extended by a P -entry to handle recursive calls of P :

π′[P 7→ (c, ρ′, π′)]

Semantics and Verification of Software Summer Semester 2010 13

Execution Relation IV

Example 15.3

c = begin

var x; var y; } v

proc F is

begin

var z;

z := x;

if z=1 then skip

else x := x-1;

call F;

y := z * y







c2















c1

end















































cF























































p

x := 2; y := 1; call F
}

c0

end

Let σ∅(l) = ρ∅(x) = π∅(P) = ⊥ for all l ∈ Loc, x ∈ Var , P ∈ PVar

Notation: σijkl ⇔ σ(0) = i, σ(1) = j, σ(2) = k, σ(3) = l

Derivation tree for (ρ∅, π∅) ` 〈c, σ∅〉 → σ1221: on the board

Semantics and Verification of Software Summer Semester 2010 14

	Summary: Axiomatic Semantics
	Extension by Blocks and Procedures
	Operational Semantics of Blocks and Procedures

