Semantics and Verification of Software

Lecture 15: Semantics of Blocks and Procedures

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Summary: Axiomatic Semantics

Rm Semantics and Verification of Software Summer Semester 2010

Summary: Axiomatic Semantics

o Formalized by partial/total correctness properties
@ Inductively defined by Hoare Logic proof rules

@ Technically involved (especially loop invariants)
—> machine support (proof assistants) indispensable for larger
programs

e Equivalence of axiomatic and operational /denotational semantics

@ Software engineering aspect: integrated development of program
and proof (cf. assertions in Java)

Rm Semantics and Verification of Software Summer Semester 2010

© Extension by Blocks and Procedures

Rm Semantics and Verification of Software Summer Semester 2010

Blocks and Procedures

o Extension of WHILE by blocks with (local) variables and
(recursive) procedures
o Involves new semantic concepts:
@ variable und procedure environments
¢ locations (memory addresses) and stores (memory states)

o Important: scope of variable and procedure identifiers

static scoping: scope of identifier = declaration environment
(here)
dynamic scoping: scope of identifier = calling environment

(old Algol/Lisp dialects)

Rm Semantics and Verification of Software Summer Semester 2010

Static and Dynamic Scoping

Example 15.1

begin
var x; var y;
proc P is y :=
x :=1;

begin
var X;
X = 2;
call P

end

end

X5

static scoping — y =1
dynamic scoping = y = 2

Semantics and Verification of Software

Summer Semester 2010

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={pP,Q,...} P
Procedure declarations PDec P
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:
p == proc P is ¢;p | e € PDec
vu=var z;v|e € VDec
c = skip|x :=a|cj;co | if b then ¢; else ¢y | while b do ¢ |
call P | begin v p ¢ end € Cmd

Rm Semantics and Verification of Software Summer Semester 2010

© Operational Semantics of Blocks and Procedures

Rm Semantics and Verification of Software Summer Semester 2010

Operational Semantics I

@ So far: states ¥ ={o | o: Var — Z}
@ Now: explicit control over all (nested) instances of a variable:
o variable environments VEnv := {p | p : Var --» Loc}
¢ (memory) locations Loc := N
o stores Sto:= {0 | o : Loc --» Z}
(partial function to maintain allocation information)
= Two-level access to a variable z € Var:
@ determine current memory location of x:

L:=p(x)

© reading/writing access to o at position [

o Thus: previous state information represented as o o p

Rm Semantics and Verification of Software Summer Semester 2010

Operational Semantics 11

o Effect of procedure call determined by its body statement and
variable and procedure environment of its declaration:

PEnv := {r | 7 : PVar --» Cmd x VEnv x PEnv}

denotes the set of procedure environments

o Effect of declaration: update of environment

upd,[.] : VDec x VEnv x Sto — VEnv x Sto
upd, [var z;v](p, o) := upd,[v](p[z — 5], o[ls — 0])
upd, [e](p; o) = (p,0)
upd,[.] : PDec x VEnv x PEnv — PEnv
upd, [proc P is ¢;p](p,m) := upd,[p](p, 7[P + (c,p,7)])
upd, [e](p,) == 7

where [, :=min{l e N | o(l) = L}

Rm Semantics and Verification of Software Summer Semester 2010 10

Execution Relation I

Definition 15.2 (Execution relation)

For c € Cmd, 0,0’ € Sto, p € VEnv, and m € PEnv, the execution
relation (p,) F (¢,0) — o’ is defined by the following rules:
(skip)

(p,m) - (skip,0) — o

(a,00p) — 2

(asgn) (p,m) F(x :=a,0) — olp(z) — 2]

(:0777-) F <Cl?0-> — o' (:0777-) F <CQ?OJ> — o
(p?ﬂ-) = <Cl;62?0-> —a”

(seq)

b,oop)—true (p,m)F (c1,0) — o

1ft<(

p,m) b (if b then ¢; else cz,0) — o’

(byoop) —false (p,m)F {(c2,0) — o

(if-f)

(p,m) F (if b then ¢; else co,0) — o’

m Semantics and Verification of Software Summer Semester 2010

Execution Relation 11

Definition 15.2 (Execution relation; continued)

(b,0 0 p) — false
(p,m) - (while b do ¢,0) — o

(wh-f)

7

(b,o 0 p)—true (p,m) F (¢,0)—0c’ (p,7)F (while b do ¢,0’) =0

(wh-t) (p,7) F (while b do ¢,0) — o
(o', 7'[P— (c,p,7")]) F (¢,0) — o’) - .
(call) (pm)F (call P.o) = o/ if 7(P) = (¢, p/,7’)
updv[[v]] (pv U) = (plv OJ) (plv updp[[p]] (pla 77)) + <C, OJ> — o
(block)

(p,7) F (begin v p ¢ end, o) — o”

m' Semantics and Verification of Software Summer Semester 2010

Execution Relation III

Remarks about rules (call) and (block):

@ Static scoping is modelled in (call) by using the environments p’
and 7’ (as determined in (block)) from the declaration site of
procedure P (and not p and m from the calling site)

@ In (call), the procedure environment associated with procedure P
is extended by a P-entry to handle recursive calls of P:

'[P (e, p/,7")]

Rm Semantics and Verification of Software Summer Semester 2010 13

Execution Relation IV

Example 15.3

¢ = begin
var x; var y; Jo
proc F is)
begin)
var z;
zZ = X;
if z=1 then skip o (P
else x := x-1; ‘ F
call F; Co 1
yi=z*y
end)
X :=2;y :=1; call F }co
end
Let oy(l) = py(x) = my(P) = L for all | € Loc,x € Var,P € PVar
Notation: o;j1 < 0(0) =4,0(1) = j,0(2) = k,0(3) =1
Derivation tree for (pg,my) = (¢, 0p9) — 01221: on the board

Semantics and Verification of Software

Summer Semester 2010 14

	Summary: Axiomatic Semantics
	Extension by Blocks and Procedures
	Operational Semantics of Blocks and Procedures

