Semantics and Verification of Software

Lecture 16: Provably Correct Implementation I
(Abstract Machine & Compiler)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Introduction

Rm mantics and Verification of Software Summer Semester

Compiler Correctness

. compiler .
programming language — machine code
semantics | | (simple) semantics
meaning = meaning
To do:

@ Definition of abstract machine
@ Definition (operational) semantics of machine instructions
@ Definition of translation WHILE — machine code (“compiler”)
@ Proof: semantics of generated machine code = semantics of

original source code

Rm Semantics and fication of Software Summer Semester 2010

© The Abstract Machine

Rm Semantics and Verification of Software Summer Semester 2010

The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by
@ configurations of the form (d,e,o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
9 e € Stk := (ZUB)* is the evaluation stack
o 0 € ¥ :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x X)
e final configurations of the form (e, e, o)
@ code sequences and instructions:
du=cl|i:d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(z) | STORE(z) | NOOP | BRANCH(d,d) | LOOP(d, d)

(where z € Z and = € Var)

m' Semantics and Verification of Software Summer Semester 2010

Semantics of AM-Code

Definition 16.2 (Transition relation of AM)

The transition relation > C Cnf x Cnf is given by

(PUSH(2) :d e,0
<ADD td, 2z
(MULT : d, 21 : 22 e,
(SUB:d,21:22:e,0
(TRUE : d, e, 0
(FALSE : d, e, 0
<EQ o d, Z1 29
(GT : d, 21 : 2o
<AND c d, tl c tg
<0R c d, tl c tg
(NEG : d,t :
(LOAD(z) : d,e, 0
(STORE(z) : d,z : e,0
(NOOP : d, e, 0
(BRANCH (dirye , dfaise) : d,t : e,0
<LO0P(d1 ,dg) o d, e, o

d,z:e,0)
,(z1 —|—z2) e,0)
(21 % 22) 1 e,0)
y (21 — 22) e,0)

Semantics and Verification of Software

Summer Semester 2010

Alternative Choices

Remark: more traditional machine architectures
@ Variables referenced by address (and not by name)
o configurations (d, e, m) with memory m € Z*
o LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)

@ BRANCH and LOOP instruction replaced by code addresses (labels)
and jumping instructions
o configurations (pc, d, e, m) with program counter pc € N
@ BRANCH and LOOP implemented by control flow, using JUMP (/) and
JUMPFALSE(]) (I € N)

@ Registers for storing intermediate values (in place of evaluation
stack e)

Rm Semantics and Verification of Software Summer Semester 2010

Terminating and Looping Computations

Definition 16.3 (AM computations)

@ A terminating computation is a finite configuration sequence of
the form ~p,v1, ...,y where
® Y = <d,€, O'>
o v_1 > for each i € {1,...,k} (k €N)
o there is no v such that v >~
o A looping computation is an infinite configuration sequence of the
form ~g,~1,72, ... where
° v = (d,e,0)
@ v D> Y41 for each i € N

Note: a terminating computation may end in a final configuration
({e,e,0)) or in a stuck configuration (e.g., (ADD, 1,0))

m Semantics and Verification of Software Summer Semester 2010

A Terminating Computation

Example 16.4

For d := PUSH(1) :LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) :LOAD(x) : ADD: STORE(x), €, 0)
> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)
> (STORE(x),4,0)
>

g,e,0(x — 4])

m Semantics and Verification of Software Summer Semester 2010

A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE, NOOP), €, o)

> (TRUE:BRANCH (NOOP : LOOP (TRUE, NOOP) ,NOOP), £, o)
(BRANCH (NOOP : LOOP (TRUE,, NOOP) , NOOP), true, o)
(NOOP : LOOP (TRUE, NOOP), ¢, o)
(LOOP (TRUE, NOOP), ¢, o)

>
>
>
>

Semantics and Verification of Software Summer Semester 2010 10

© Properties of AM

Rm Semantics and Verification of Software Summer Semester 2010 11

A New Inductive Principle

Application: Computation sequences (Def. 16.3)

Definition: e for each v € Cnf, v is a computation sequence (of

length 0)
e whenever v9,71,...,7 is a computation sequence
and Y B Vi+1, then Y0, V15 - - -5 Vies V41 is a

computation sequence (of length k + 1)

Induction base: property holds for all computation sequences of length
0

Induction hypothesis: property holds for all computation sequences of
length < k&

Induction step: property holds for all computation sequences of length
k+1

m Semantics and Verification of Software Summer Semester 2010 12

Application: Extension of Code and Stack

If <d1,€1,0’> >* <d/,€/,0',>,

<d1 tdy,eq 62,0’> >* <d/ 3 dg,el 3 62,0”>

for every do € Code and es € Stk.

Interpretation: both the code and the stack component can be
extended without changing the behavior of the machine

by induction on the length of the computation sequence
(on the board) O

m Semantics and Verification of Software Summer Semester 2010 13

Another Property: Determinism

The semantics of AM is deterministic: for all v,7',7" € Cnf,
vy and v >+" imply v =+".

| A\

Proof.
The successor configuration is determined by the first instruction in the
code component, which is unique.]

4

Thus the following function is well defined:

Definition 16.8 (Semantics of AM)

The semantics of an instruction sequence is given by the mapping
M[.] : Code — (X --+ %),
defined by
o
dl(0) = {

! if (d,e,0) >* (e,e,0")

undefined otherwise

m Semantics and Verification of Software Summer Semester 2010 14

@ The Compiler

Rm mantics and Verification of Software Summer Semester

Repetition: Syntax of WHILE Programs

Definition (Syntax of WHILE (Def. 1.2))

The syntax of WHILE programs is defined by the following
context-free grammar:

a:=z|x|ar+as | aj-as | ay*az € AExp
b o= 1 | ar=az | a1>ag | —b | by A by | b1 V by € BExp
cu=skip |z :=a|c1;co | if b then ¢; else ¢ | while b do ¢ € Cmd

v

m' Semantics and Verification of Software Summer Semester 2010 16

Translation of Arithmetic Expressions

Definition 16.9 (Translation of arithmetic expressions)

The translation function
Tal] : AExp — Code

is given by
Talz] := PUSH(2)
Talz] := LOAD(x)
‘Za[[a1+a2]] = Za[[ag]] : ‘Za[[al]] : ADD
Talai-az] = Fylas] : Tufar] : SUB
Talar*az] = Fylas] : Tufar] : MULT

Talx + 1] = Tu[1] : To[x] : ADD
= PUSH(1) : LOAD(x) : ADD

m' Semantics and Verification of Software Summer Semester 2010 17

Translation of Boolean Expressions

Definition 16.11 (Translation of Boolean expressions)

The translation function
T[] : BExp — Code

is given by
Tp[true] := TRUE
Tp[false] := FALSE
Tplar=as] = Tulas] : Tufar] : EQ
Tplar>az] = Fyflaz] : Tyfar] : GT
‘Ib[[—'b]] = Tb[[b]] : NEG
Tb[[bl A ag]] = Tb[[bg]] : Tb[[bl]] : AND
Tb[[bl V ag]] = Tb[[bg]] : Tb[[bl]] : OR

m' Semantics and Verification of Software Summer Semester 2010

Translation of Statements

Definition 16.12 (Translation of statements)

The translation function T.[.] : Cmd — Code is given by
T.[skip] := NOOP
Telz :=a] := F,[a] : STORE(x)
Telersea] = Telea] + Tele]
Tc[if b then ¢; else co] := Ty[b] : BRANCH(Z [e1], Zc[e2])
Tc[while b do ¢] := LOOP(Z,[b],Zc[c])

Example 16.13 (Factorial program)

Tefy:=1; while —(x=1) do (y:=y*x; x:=x-1)]

= T [y:=1] : T [while —(x=1) do (y:=y*x; x:=x-1)]

= T,[1] : STORE(y) : LOOP (%[~ (x=1)], % [y:=y*x; x:=x-1])

= PUSH(1) : STORE(y) : LOOP (%} [x=1] : NEG, T [y:=y*x] : T [x:=x-1])

— PUSH(1) : STORE(y) : LOOP(PUSH(1) : LOAD (x) : EQ: NEG,
LOAD(x) : LOAD(y) :MULT : STORE(y) :
PUSH(1) :LOAD(x) : SUB: STORE(x))

m Semantics and Verification of Software Summer Semester 2010 19

	Introduction
	The Abstract Machine
	Properties of AM
	The Compiler

