

Semantics and Verification of Software

Lecture 16: Provably Correct Implementation I (Abstract Machine & Compiler)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw10/>

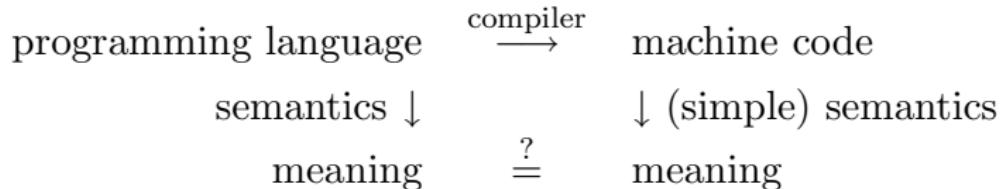
Summer Semester 2010

1 Introduction

2 The Abstract Machine

3 Properties of AM

4 The Compiler



To do:

- Definition of **abstract machine**
- Definition (operational) **semantics of machine instructions**
- Definition of **translation** WHILE \rightarrow machine code (“compiler”)
- **Proof:** semantics of generated machine code = semantics of original source code

1 Introduction

2 The Abstract Machine

3 Properties of AM

4 The Compiler

The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by

- configurations of the form $\langle d, e, \sigma \rangle \in Cnf$ where
 - $d \in Code$ is the sequence of instructions (code) to be executed
 - $e \in Stk := (\mathbb{Z} \cup \mathbb{B})^*$ is the evaluation stack
 - $\sigma \in \Sigma := (Var \rightarrow \mathbb{Z})$ is the (storage) state
- (thus $Cnf = Code \times Stk \times \Sigma$)
- final configurations of the form $\langle \varepsilon, e, \sigma \rangle$
- code sequences and instructions:

$$d ::= \varepsilon \mid i : d$$
$$i ::= PUSH(z) \mid ADD \mid MULT \mid SUB \mid$$
$$TRUE \mid FALSE \mid EQ \mid GT \mid AND \mid OR \mid NEG \mid$$
$$LOAD(x) \mid STORE(x) \mid NOOP \mid BRANCH(d, d) \mid LOOP(d, d)$$

(where $z \in \mathbb{Z}$ and $x \in Var$)

Definition 16.2 (Transition relation of AM)

The **transition relation** $\triangleright \subseteq Cnf \times Cnf$ is given by

- $\langle \text{PUSH}(z) : d, e, \sigma \rangle \triangleright \langle d, z : e, \sigma \rangle$
- $\langle \text{ADD} : d, z_1 : z_2 : e, \sigma \rangle \triangleright \langle d, (z_1 + z_2) : e, \sigma \rangle$
- $\langle \text{MULT} : d, z_1 : z_2 : e, \sigma \rangle \triangleright \langle d, (z_1 * z_2) : e, \sigma \rangle$
- $\langle \text{SUB} : d, z_1 : z_2 : e, \sigma \rangle \triangleright \langle d, (z_1 - z_2) : e, \sigma \rangle$
- $\langle \text{TRUE} : d, e, \sigma \rangle \triangleright \langle d, \text{true} : e, \sigma \rangle$
- $\langle \text{FALSE} : d, e, \sigma \rangle \triangleright \langle d, \text{false} : e, \sigma \rangle$
- $\langle \text{EQ} : d, z_1 : z_2 : e, \sigma \rangle \triangleright \langle d, (z_1 = z_2) : e, \sigma \rangle$
- $\langle \text{GT} : d, z_1 : z_2 : e, \sigma \rangle \triangleright \langle d, (z_1 > z_2) : e, \sigma \rangle$
- $\langle \text{AND} : d, t_1 : t_2 : e, \sigma \rangle \triangleright \langle d, (t_1 \wedge t_2) : e, \sigma \rangle$
- $\langle \text{OR} : d, t_1 : t_2 : e, \sigma \rangle \triangleright \langle d, (t_1 \vee t_2) : e, \sigma \rangle$
- $\langle \text{NEG} : d, t : e, \sigma \rangle \triangleright \langle d, \neg t : e, \sigma \rangle$
- $\langle \text{LOAD}(x) : d, e, \sigma \rangle \triangleright \langle d, \sigma(x) : e, \sigma \rangle$
- $\langle \text{STORE}(x) : d, z : e, \sigma \rangle \triangleright \langle d, e, \sigma[x \mapsto z] \rangle$
- $\langle \text{NOOP} : d, e, \sigma \rangle \triangleright \langle d, e, \sigma \rangle$
- $\langle \text{BRANCH}(d_{\text{true}}, d_{\text{false}}) : d, t : e, \sigma \rangle \triangleright \langle d_t : d, e, \sigma \rangle$
- $\langle \text{LOOP}(d_1, d_2) : d, e, \sigma \rangle \triangleright \langle d_1 : \text{BRANCH}(d_2 : \text{LOOP}(d_1, d_2), \text{NOOP}) : d, e, \sigma \rangle$

Remark: more traditional machine architectures

- Variables referenced by address (and not by name)
 - configurations $\langle d, e, m \rangle$ with memory $m \in \mathbb{Z}^*$
 - LOAD(x)/STORE(x) replaced by GET(n)/PUT(n) (where $n \in \mathbb{N}$)
- BRANCH and LOOP instruction replaced by code addresses (labels) and jumping instructions
 - configurations $\langle pc, d, e, m \rangle$ with program counter $pc \in \mathbb{N}$
 - BRANCH and LOOP implemented by control flow, using JUMP(l) and JUMPFALSE(l) ($l \in \mathbb{N}$)
- Registers for storing intermediate values (in place of evaluation stack e)

Definition 16.3 (AM computations)

- A **terminating computation** is a finite configuration sequence of the form $\gamma_0, \gamma_1, \dots, \gamma_k$ where
 - $\gamma_0 = \langle d, \varepsilon, \sigma \rangle$
 - $\gamma_{i-1} \triangleright \gamma_i$ for each $i \in \{1, \dots, k\}$ ($k \in \mathbb{N}$)
 - there is no γ such that $\gamma_k \triangleright \gamma$
- A **looping computation** is an infinite configuration sequence of the form $\gamma_0, \gamma_1, \gamma_2, \dots$ where
 - $\gamma_0 = \langle d, \varepsilon, \sigma \rangle$
 - $\gamma_i \triangleright \gamma_{i+1}$ for each $i \in \mathbb{N}$

Note: a terminating computation may end in a **final configuration** ($\langle \varepsilon, e, \sigma \rangle$) or in a **stuck configuration** (e.g., $\langle \text{ADD}, 1, \sigma \rangle$)

A Terminating Computation

Example 16.4

For $d := \text{PUSH}(1) : \text{LOAD}(x) : \text{ADD} : \text{STORE}(x)$ and $\sigma(x) = 3$, we obtain the following terminating computation:

- $\langle \text{PUSH}(1) : \text{LOAD}(x) : \text{ADD} : \text{STORE}(x), \varepsilon, \sigma \rangle$
- ▷ $\langle \text{LOAD}(x) : \text{ADD} : \text{STORE}(x), 1, \sigma \rangle$
- ▷ $\langle \text{ADD} : \text{STORE}(x), 3 : 1, \sigma \rangle$
- ▷ $\langle \text{STORE}(x), 4, \sigma \rangle$
- ▷ $\langle \varepsilon, \varepsilon, \sigma[x \mapsto 4] \rangle$

Example 16.5

The following computation loops:

- $\langle \text{LOOP}(\text{TRUE}, \text{NOOP}), \varepsilon, \sigma \rangle$
 - ▷ $\langle \text{TRUE} : \text{BRANCH}(\text{NOOP} : \text{LOOP}(\text{TRUE}, \text{NOOP}), \text{NOOP}), \varepsilon, \sigma \rangle$
 - ▷ $\langle \text{BRANCH}(\text{NOOP} : \text{LOOP}(\text{TRUE}, \text{NOOP}), \text{NOOP}), \text{true}, \sigma \rangle$
 - ▷ $\langle \text{NOOP} : \text{LOOP}(\text{TRUE}, \text{NOOP}), \varepsilon, \sigma \rangle$
 - ▷ $\langle \text{LOOP}(\text{TRUE}, \text{NOOP}), \varepsilon, \sigma \rangle$
 - ▷ ...

1 Introduction

2 The Abstract Machine

3 Properties of AM

4 The Compiler

Application: Computation sequences (Def. 16.3)

Definition:

- for each $\gamma \in Cnf$, γ is a **computation sequence** (of length 0)
- whenever $\gamma_0, \gamma_1, \dots, \gamma_k$ is a computation sequence and $\gamma_k \triangleright \gamma_{k+1}$, then $\gamma_0, \gamma_1, \dots, \gamma_k, \gamma_{k+1}$ is a **computation sequence** (of length $k + 1$)

Induction base: property holds for all computation sequences of length 0

Induction hypothesis: property holds for all computation sequences of length $\leq k$

Induction step: property holds for all computation sequences of length $k + 1$

Lemma 16.6

If $\langle d_1, e_1, \sigma \rangle \triangleright^* \langle d', e', \sigma' \rangle$,

$$\langle d_1 : d_2, e_1 : e_2, \sigma \rangle \triangleright^* \langle d' : d_2, e' : e_2, \sigma' \rangle$$

for every $d_2 \in \text{Code}$ and $e_2 \in \text{Stk}$.

Interpretation: both the code and the stack component can be extended without changing the behavior of the machine

Proof.

by induction on the length of the computation sequence
(on the board)

Another Property: Determinism

Lemma 16.7

The semantics of AM is **deterministic**: for all $\gamma, \gamma', \gamma'' \in \text{Cnf}$,
 $\gamma \triangleright \gamma'$ and $\gamma \triangleright \gamma''$ imply $\gamma' = \gamma''$.

Proof.

The successor configuration is determined by the first instruction in the code component, which is unique. \square

Thus the following function is well defined:

Definition 16.8 (Semantics of AM)

The **semantics of an instruction sequence** is given by the mapping

$$\mathfrak{M}[\![\cdot]\!]: \text{Code} \rightarrow (\Sigma \dashrightarrow \Sigma),$$

defined by

$$\mathfrak{M}[\![d]\!](\sigma) := \begin{cases} \sigma' & \text{if } \langle d, \varepsilon, \sigma \rangle \triangleright^* \langle \varepsilon, e, \sigma' \rangle \\ \text{undefined} & \text{otherwise} \end{cases}$$

1 Introduction

2 The Abstract Machine

3 Properties of AM

4 The Compiler

Definition (Syntax of WHILE (Def. 1.2))

The **syntax of WHILE programs** is defined by the following context-free grammar:

$$a ::= z \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in AExp$$
$$b ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg b \mid b_1 \wedge b_2 \mid b_1 \vee b_2 \in BExp$$
$$c ::= \text{skip} \mid x := a \mid c_1 ; c_2 \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \mid \text{while } b \text{ do } c \in Cmd$$

Translation of Arithmetic Expressions

Definition 16.9 (Translation of arithmetic expressions)

The translation function

$$\mathfrak{T}_a[\cdot] : AExp \rightarrow Code$$

is given by

$$\mathfrak{T}_a[z] := \text{PUSH}(z)$$

$$\mathfrak{T}_a[x] := \text{LOAD}(x)$$

$$\mathfrak{T}_a[a_1 + a_2] := \mathfrak{T}_a[a_2] : \mathfrak{T}_a[a_1] : \text{ADD}$$

$$\mathfrak{T}_a[a_1 - a_2] := \mathfrak{T}_a[a_2] : \mathfrak{T}_a[a_1] : \text{SUB}$$

$$\mathfrak{T}_a[a_1 * a_2] := \mathfrak{T}_a[a_2] : \mathfrak{T}_a[a_1] : \text{MULT}$$

Example 16.10

$$\begin{aligned}\mathfrak{T}_a[x + 1] &= \mathfrak{T}_a[1] : \mathfrak{T}_a[x] : \text{ADD} \\ &= \text{PUSH}(1) : \text{LOAD}(x) : \text{ADD}\end{aligned}$$

Translation of Boolean Expressions

Definition 16.11 (Translation of Boolean expressions)

The translation function

$$\mathfrak{T}_b[\cdot] : BExp \rightarrow Code$$

is given by

$$\begin{aligned}\mathfrak{T}_b[\text{true}] &:= \text{TRUE} \\ \mathfrak{T}_b[\text{false}] &:= \text{FALSE} \\ \mathfrak{T}_b[a_1 = a_2] &:= \mathfrak{T}_a[a_2] : \mathfrak{T}_a[a_1] : \text{EQ} \\ \mathfrak{T}_b[a_1 > a_2] &:= \mathfrak{T}_a[a_2] : \mathfrak{T}_a[a_1] : \text{GT} \\ \mathfrak{T}_b[\neg b] &:= \mathfrak{T}_b[b] : \text{NEG} \\ \mathfrak{T}_b[b_1 \wedge a_2] &:= \mathfrak{T}_b[b_2] : \mathfrak{T}_b[b_1] : \text{AND} \\ \mathfrak{T}_b[b_1 \vee a_2] &:= \mathfrak{T}_b[b_2] : \mathfrak{T}_b[b_1] : \text{OR}\end{aligned}$$

Translation of Statements

Definition 16.12 (Translation of statements)

The translation function $\mathfrak{T}_c[\cdot] : Cmd \rightarrow Code$ is given by

$$\begin{aligned}\mathfrak{T}_c[\text{skip}] &:= \text{NOOP} \\ \mathfrak{T}_c[x := a] &:= \mathfrak{T}_a[a] : \text{STORE}(x) \\ \mathfrak{T}_c[c_1; c_2] &:= \mathfrak{T}_c[c_1] : \mathfrak{T}_c[c_2] \\ \mathfrak{T}_c[\text{if } b \text{ then } c_1 \text{ else } c_2] &:= \mathfrak{T}_b[b] : \text{BRANCH}(\mathfrak{T}_c[c_1], \mathfrak{T}_c[c_2]) \\ \mathfrak{T}_c[\text{while } b \text{ do } c] &:= \text{LOOP}(\mathfrak{T}_b[b], \mathfrak{T}_c[c])\end{aligned}$$

Example 16.13 (Factorial program)

$$\begin{aligned}\mathfrak{T}_c[y := 1; \text{while } \neg(x = 1) \text{ do } (y := y * x; x := x - 1)] \\ &= \mathfrak{T}_c[y := 1] : \mathfrak{T}_c[\text{while } \neg(x = 1) \text{ do } (y := y * x; x := x - 1)] \\ &= \mathfrak{T}_a[1] : \text{STORE}(y) : \text{LOOP}(\mathfrak{T}_b[\neg(x = 1)], \mathfrak{T}_c[y := y * x; x := x - 1]) \\ &= \text{PUSH}(1) : \text{STORE}(y) : \text{LOOP}(\mathfrak{T}_b[x = 1] : \text{NEG}, \mathfrak{T}_c[y := y * x] : \mathfrak{T}_c[x := x - 1]) \\ &\quad \vdots \\ &= \text{PUSH}(1) : \text{STORE}(y) : \text{LOOP}(\text{PUSH}(1) : \text{LOAD}(x) : \text{EQ} : \text{NEG}, \\ &\quad \quad \quad \text{LOAD}(x) : \text{LOAD}(y) : \text{MULT} : \text{STORE}(y) : \\ &\quad \quad \quad \text{PUSH}(1) : \text{LOAD}(x) : \text{SUB} : \text{STORE}(x))\end{aligned}$$