Semantics and Verification of Software

Lecture 17: Provably Correct Implementation II
(Correctness of Compiler)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Repetition: Abstract Machine & Compiler

Rm Semantics and Verification of Software Summer Semester 2010

Compiler Correctness

. compiler .
programming language — machine code
semantics | | (simple) semantics
meaning = meaning
To do:

@ Definition of abstract machine
@ Definition (operational) semantics of machine instructions
@ Definition of translation WHILE — machine code (“compiler”)
@ Proof: semantics of generated machine code = semantics of

original source code

Rm Semantics and fication of Software Summer Semester 2010

The Abstract Machine

Definition (Abstract machine)

The abstract machine (AM) is given by
@ configurations of the form (d,e,o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
9 e € Stk := (ZUB)* is the evaluation stack
o 0 € ¥ :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x X)
e final configurations of the form (e, e, o)
@ code sequences and instructions:
du=cl|i:d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(z) | STORE(z) | NOOP | BRANCH(d,d) | LOOP(d, d)

(where z € Z and = € Var)

m' Semantics and Verification of Software Summer Semester 2010

Translation of Arithmetic Expressions

Definition (Translation of arithmetic expressions)

The translation function
Tal] : AExp — Code

is given by
%alz] := PUSH(2)
Talz] := LOAD(x)
‘Za[[a1+a2]] = Za[[ag]] : ‘Za[[al]] : ADD
Talai-az] = Ffas] : Tufar] : SUB
‘Za[[al*ag]] = Za[[ag]] : ‘Za[[al]] : MULT

Talx + 1] = F,[1] : To[x] : ADD
= PUSH(1) : LOAD(x) : ADD

m' Semantics and Verification of Software Summer Semester 2010

Translation of Boolean Expressions

Definition (Translation of Boolean expressions)

The translation function
To[.] : BExp — Code

is given by
Tp[true] := TRUE
Tp[false] := FALSE
‘Zb[[a1=a2]] = (Za[[ag]] : Ka[[al]] : EQ
Tplar>az] = Fyllaz] : Tylal] : GT
Tp[0] := T[] : NEG
(Zb[[bl A ag]] = Tb[[bg]] : Tb[[bl]] : AND
Zb[[bl V CLQ]] = Zb[[bQ]] : Zb[[bl]] : 0OR

m' Semantics and Verification of Software Summer Semester 2010

Translation of Statements

Definition (Translation of statements)

The translation function T.[.] : Cmd — Code is given by
T [skip] := NOOP
Tz := aH = Taﬁa]] : STORE ()
Telersea] = Feler] : Telez]
Tc[if b then ¢; else ca] := Tp[b] : BRANCH(Z [c1], Te[ca])
Tc[while b do c] := LOOP(Z,[b], T, [c])

Example (Factorial program)

Tely:=1; while —(x=1) do (y:=y*x; x:=x-1)]

= Tcfy:=1] : Tc[while —(x=1) do (y:=y*x; x:=x-1)]

= T,[1] : STORE(y) : LOOP(Zp[~(x=1)], %, [y:=y*x; x:=x-1])

= PUSH(1) : STORE(y) : LOOP (%3[x=1] : NEG, T [y:=y*x] : T [x:=x-1])

; PUSH(1) : STORE(y) : LOOP (PUSH(1) : LOAD(x) :EQ:NEG,
LOAD(x) :LOAD(Y) :MULT:STORE(y) :
PUSH(1) : LOAD(x) : SUB: STORE(x))

m Semantics and Verification of Software

Summer Semester 2010

© Another Execution Example

Rm Semantics and Verification of Software Summer Semester 2010

Execution of Factorial Program

Example 17.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

m' Semantics and rification of Software Summer Semester 2010

Execution of Factorial Program

Example 17.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE (y) :LOOP (d; ,d2) 2 B)

m' Semantics and rification of Software Summer Semester 2010

Execution of Factorial Program

Example 17.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .
(PUSH(1) : STORE (y) :LOOP (d1 ,d2))
> (STORE(y) :LOOP (d1 ,d2))

S o
Qq

m' Semantics and rification of Software Summer Semester 2010

Execution of Factorial Program

Example 17.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE (y) :LOOP (d; ,d2)) @)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(d; ,d2) , oy)

m' Semantics and rification of Software Summer Semester 2010

Execution of Factorial Program

Example 17.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) :LOOP (d1 ,d2) s g, 0)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(dy ,d2) , g oly—1])
b (dy :BRANCH(ds :LOOP (dy ,d2) , NOOP) . e oly— 1])

m' Semantics and rification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(d; ,d2) , g oy)
D> (d1 :BRANCH(ds : LOOP (d1 ,d2) ,NOOP) ;& oly—1)
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP (d; ,d2) ,NOOP) s 1, oy — 1])

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(d; ,d2) , g oy)
D> (dy :BRANCH(d> : LOOP(d; ,d2) ,NOOP) . g oy 1])
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP(dy ,d2) ,NOOP) , Lioly—1])
o> (EQ:NEG:BRANCH(d2 :LOOP(dy ,d2) ,NOOP) ,2:1, oy 1])

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(dy ,d2) , g oly—1])
> (dy :BRANCH(d :LOOP (ds ,d2) ,NOOP) . e oly—1])
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP (d; ,d2) ,NOOP) s 1, oly — 1])
> (EQ:NEG:BRANCH (ds : LOOP (d; ,d2) ,NOOP) 201, oy — 1])
> (NEG:BRANCH(dj :LOOP(d; ,ds) ,NOOP) , false, ofy — 1])

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
D> (STORE(y) :LOOP(d; ,d2) , Lo)
> (LOOP(dy ,d2) , g oly—1])
> (dy :BRANCH(d :LOOP (ds ,d2) ,NOOP) . e oly—1])
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP (d; ,d2) ,NOOP) s 1, oly — 1])
> (EQ:NEG:BRANCH (ds : LOOP (d; ,d2) ,NOOP) 201, oy — 1])
> (NEG:BRANCH(dj :LOOP(dj ,ds) ,NOOP) , false, ofy — 1])
> (BRANCH(d5 :LOOP (dy ,d2) ,NOOP) , true, ofy — 1])

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) :LOOP(d1 ,d2)) B @)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(d; ,d2) , g oy)
D> (d1 :BRANCH(ds : LOOP (d1 ,d2) ,NOOP) ;& oly—1)
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP(dy ,d2) ,NOOP) , Lioly—1])
D> (EQ:NEG:BRANCH(do :LOOP(d; ,d2) ,NOOP) 211, ofy = 1])
> (NEG:BRANCH (d2 : LOOP (d; ,d2) ,NOOP) , false, oy — 1])
t> (BRANCH(d> : LOOP(d ,d2) ,NOOP) , true, oy — 1])
> (do :LOOP(d; ,d2) ;g oy)

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) :LOOP (d1 ,d2) , &, 0)
> (STORE(y) :LOOP (d; ,d2) 5 1,0)
> (LOOP(d; ,d2) , g oy)
> (dq :BRANCH(d2 :LOOP (d ,d2) ,NOOP) s g, oly —1])
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP (d; ,d2) ,NOOP) , 1, oly — 1])
> (EQ:NEG:BRANCH(dy :LOOP (d; ,d2) ,NOOP) ,2:1, oy — 1])
> (NEG:BRANCH(dj :LOOP(dj ,ds) ,NOOP) , false, oy — 1])
> (BRANCH(d5 :LOOP (dy ,d2) ,NOOP) , true, oly — 1])
> (do :LOOP(dy ,d2) ;g oly—=1)
> (LOAD(y) :MULT: STORE(y) : PUSH(1) : LOAD (x) : SUB: STORE (x) : LOOP (d; ,d2), 2, oy — 1])

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (Factorial program)

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) :LOOP (d1 ,d2) , &, 0)
> (STORE(y) :LOOP (d; ,d2) 5 1,0)
> (LOOP(d; ,d2) , g oy)
> (dq :BRANCH(d2 :LOOP (d ,d2) ,NOOP) s g, oly —1])
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP (d; ,d2) ,NOOP) , 1, oly — 1])
> (EQ:NEG:BRANCH(dy :LOOP (d; ,d2) ,NOOP) ,2:1, oy — 1])
> (NEG:BRANCH(dj :LOOP(dj ,ds) ,NOOP) , false, oy — 1])
> (BRANCH(d5 :LOOP (dy ,d2) ,NOOP) , true, oly — 1])
> (do :LOOP(dy ,d2) ;g oly—=1)
> (LOAD(y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2), 2, oy — 1])
> (MULT:STORE(y) : PUSH(1) : LOAD (x) : SUB: STORE (x) : LOOP (d1 ,d2) ,1:2, oy — 1])

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (F:

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) :LOOP (d1 ,d2) ,
STORE(y) :LOOP (dy ,d2) 5
LOOP(d) ,d2) ,
dy :BRANCH (d2 : LOOP(d; ,d2) ,NOOP) 9
LOAD (x) :EQ: NEG : BRANCH(d> : LOOP (d1 , d>) ,NOOP))

EQ:NEG:BRANCH (d2 : LOOP(d; ,d2) ,NOOP) ,2:1,

> (
> (y— 1
> (

> (

> (

> (NEG:BRANCH(dy :LOOP (d; ,d2) ,NOOP)

> (

> (

> (

> (

> (

y'—)l
yi— 1
y— 1
yi— 1
y— 1
y'—)l
yi— 1
yi— 1
y'—>1

BRANCH (d2 : LOOP (d ,d2) ,NOOP)

do :LOOP(dy ,d2)

LOAD(y) :MULT:STORE(y) : PUSH(1) :LOAD (x) : SUB: STORE (x) : LOOP(d1 ,d2)
MULT: STORE (y) : PUSH(1) : LOAD (x) : SUB: STORE (x) : LOOP (d; ,d2)

STORE (y) :PUSH(1) : LOAD (x) : SUB: STORE (x) : LOOP (d1 ,d2)

Y

3

o
9999999999979

e~~~

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (F:

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(d; ,d2) s g, oy—1)
> (dy :BRANCH(dy : LOOP (dy ,d2) ,NOOP) . e oly—1)
> (LOAD(x) :EQ:NEG: BRANCH (d2 : LOOP(dy ,d2) ,NOOP) , lLoy—1)
> (EQ:NEG:BRANCH (d> :LOOP (d; ,d2) ,NOOP) ,2:1,0ly—1)
> (NEG:BRANCH(dy :LOOP (d; ,d2) ,NOOP) , false, o[y — 1)
> (BRANCH(d5 :LOOP (dy ,d2) ,NOOP) , true, oly — 1)
> (d2:LOOP(d1 ,d2) , g, oly—1)
> (LOAD(y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2), 2, 0y—1)
> (MULT:STORE(y) : PUSH(1) : LOAD (x) : SUB: STORE (x) : LOOP (d1 ,d2) ,1:2, 0ly—1)
> (STORE(y) :PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) , 2, oly—1)
> (PUSH(1) :LOAD(x) : SUB: STORE(x) : LOOP (dy ,d2) s €, oy — 2)

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (F:

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(d; ,d2) s g, oy—1)
> (dy :BRANCH(dy : LOOP (dy ,d2) ,NOOP) . e oly—1)
> (LOAD(x) :EQ:NEG: BRANCH (d2 : LOOP(dy ,d2) ,NOOP) , lLoy—1)
> (EQ:NEG:BRANCH (d> :LOOP (d; ,d2) ,NOOP) ,2:1,0ly—1)
> (NEG:BRANCH(dy :LOOP (d; ,d2) ,NOOP) , false, o[y — 1)
> (BRANCH(d5 :LOOP (dy ,d2) ,NOOP) , true, oly — 1)
> (d2:LOOP(d1 ,d2) , g, oly—1)
> (LOAD(y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2), 2, 0y—1)
> (MULT:STORE(y) : PUSH(1) : LOAD (x) : SUB: STORE (x) : LOOP (d1 ,d2) ,1:2, 0ly—1)
> (STORE(y) :PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) , 2, oly—1)
> (PUSH(1) :LOAD(x) : SUB: STORE(x) : LOOP (dy ,d2) s €, oy — 2)
&> (LOAD(x) : SUB: STORE (x) : LOOP (d1 , d3) . 1oly—2)

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (F:

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(d; ,d2) s g, oy—1)
> (dy :BRANCH(d :LOOP (ds ,d2) ,NOOP) . e oly—1)
> (LOAD(x) :EQ:NEG: BRANCH (d2 : LOOP(dy ,d2) ,NOOP) , lLoy—1)
> (EQ:NEG:BRANCH (d> :LOOP (d; ,d2) ,NOOP) ,2:1,0ly—1)
> (NEG:BRANCH(dy :LOOP (d; ,d2) ,NOOP) , false, o[y — 1)
> (BRANCH(d5 :LOOP (dy ,d2) ,NOOP) , true, oly — 1)
> (d2:LOOP(d1 ,d2) , g, oly—1)
> (LOAD(y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2), 2, 0y—1)
> (MULT:STORE(y) : PUSH(1) : LOAD (x) : SUB: STORE (x) : LOOP (d1 ,d2) ,1:2, 0ly—1)
> (STORE(y) :PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) , 2, oly—1)
> (PUSH(1) :LOAD(x) : SUB: STORE(x) : LOOP (dy ,d2) s €, oy — 2)
&> (LOAD(x) : SUB: STORE (x) : LOOP (d1 , d3) . 1oly—2)
> (SUB:STORE (x) : LOOP (d1 ,d2) ,2:1,0ly— 2)

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (F:

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) :LOOP (d1 ,d2) s g, 0)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(d; ,d2) s g, oy—1)
> (dy :BRANCH(d :LOOP (ds ,d2) ,NOOP) . e oly—1)
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP (d; ,d2) ,NOOP) s 1,oly—1)
> <EQ:NEG:BRANCH(d2 :LOOP(d; ,d2) ,NOOP) ,2:1,0ly—1)
> <NEG:BRANCH(d2 :LOOP(d; ,d2) ,NOOP) , false, o[y — 1)
> (BRANCH(d5 :LOOP (dy ,d2) ,NOOP) , true, oly — 1)
> (d2:LOOP(d1 ,d2) , g, oly—1)
> <LOAD(Y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2), 2, 0y—1)
> <MULT:STORE(Y) :PUSH(1) : LOAD (x) : SUB: STORE(x) : LOOP (d; ,d2) ,1:2, 0ly—1)
> (STORE(y) :PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) , 2, oly—1)
> (PUSH(1) :LOAD(x) : SUB: STORE(x) : LOOP (dy ,d2) s €, oy — 2)
&> (LOAD(x) : SUB: STORE (x) : LOOP (d1 , d3) . 1,0[y—2)
> (SUB:STORE (x) : LOOP (d1 ,d2) ,2:1, 0ly— 2)
D> (STORE(x) :LOOP(d; ,d2) , Loly—2)

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (F:

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .
(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
I> (STORE(y) :LOOP(d; ,d2) , 1o)
> (LOOP(d; ,d2) s g, oy—1)
b (dy :BRANCH(ds :LOOP (dy ,d2) ,NOOP) . e oly—1)
> (LOAD(x) :EQ:NEG: BRANCH (d2 : LOOP(dy ,d2) ,NOOP) , lLoy—1)
> (EQ:NEG:BRANCH (d> :LOOP (d; ,d2) ,NOOP) ,2:1,0ly—1)
> (NEG:BRANCH(dy :LOOP (d; ,d2) ,NOOP) , false, o[y — 1)
> (BRANCH(ds :LOOP(d; ,ds) ,NOOP) , true, oy — 1)
> (d2:LOOP(d1 ,d2) , g, oly—1)
> (LOAD(y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2), 2, 0y—1)
> (MULT:STORE(y) : PUSH(1) : LOAD (x) : SUB: STORE (x) : LOOP (d1 ,d2) ,1:2, 0ly—1)
> (STORE(y) :PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) , 2, oly—1)
> (PUSH(1) :LOAD(x) : SUB: STORE(x) : LOOP (dy ,d2) s €, oy — 2)
1> (LOAD(x) : SUB: STORE(x) :LOOP(d; ,d2) y Loy—2)
> (SUB:STORE (x) : LOOP (d1 ,d2) ,2:1, 0ly— 2)
> (STORE(x) :LOOP(d; ,d2) s 1, 0ly—2)
> (LOOP(dy ,d2) , &ox—1ly—2])

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (F:

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(d; ,d2) s g, oy—1)
> (dy :BRANCH(dy : LOOP (dy ,d2) ,NOOP) . e oly—1)
> (LOAD(x) :EQ:NEG: BRANCH (d2 : LOOP(dy ,d2) ,NOOP) , lLoy—1)
> <EQ:NEG:BRANCH(d2 :LOOP(d; ,d2) ,NOOP) ,2:1,0ly—1)
> <NEG:BRANCH(d2 :LOOP(d; ,d2) ,NOOP) , false, o[y — 1)
> (BRANCH(d5 :LOOP (dy ,d2) ,NOOP) , true, oly — 1)
> (d2:LOOP(d1 ,d2) , g, oly—1)
> <LOAD(y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2), 2, 0y—1)
> <MULT:STORE(Y) :PUSH(1) : LOAD (x) : SUB: STORE(x) : LOOP (d; ,d2) ,1:2, 0ly—1)
> (STORE(y) :PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) , 2, oly—1)
> (PUSH(1) :LOAD(x) : SUB: STORE(x) : LOOP (dy ,d2) s €, oy — 2)
&> (LOAD(x) : SUB: STORE (x) : LOOP (d1 , d3) . 1oly—2)
> (SUB:STORE (x) : LOOP (d1 ,d2) ,2:1, 0ly— 2)
> (STORE(x) :LOOP(d; ,d2) s 1, 0ly—2)
> (LOOP(d1 ,d2) , g ox Ly 2)
> (dq :BRANCH(d2 :LOOP (d ,d2) ,NOOP) s g, ox— 1,y — 2])

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (F:

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
I (STORE(y) :LOOP (d; ,ds) ., 1,0)
> (LOOP(d; ,d2) s g, oy—1)
> (d1 :BRANCH (ds : LOOP (d; ,do) ,NOOP) . e oly—1)
> (LOAD(x) :EQ:NEG: BRANCH (d2 : LOOP(dy ,d2) ,NOOP) , lLoy—1)
> (EQ:NEG:BRANCH (d> :LOOP (d; ,d2) ,NOOP) ,2:1,0ly—1)
> (NEG:BRANCH(dy :LOOP (d; ,d2) ,NOOP) , false, o[y — 1)
> (BRANCH(ds :LOOP(d; ,ds) ,NOOP) , true, oly — 1)
> (d2:LOOP(d1 ,d2) , g, oly—1)
> (LOAD(y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2), 2, 0y—1)
> (MULT:STORE(y) : PUSH(1) : LOAD (x) : SUB: STORE (x) : LOOP (d1 ,d2) ,1:2, 0ly—1)
> (STORE(y) :PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) , 2, oly—1)
> (PUSH(1) :LOAD(x) : SUB: STORE(x) : LOOP (dy ,d2) s €, oy — 2)
1> (LOAD(x) : SUB: STORE(x) :LOOP(d; ,d2) y Loy—2)
> (SUB:STORE (x) : LOOP (d1 ,d2) ,2:1, 0ly— 2)
> (STORE(x) :LOOP(d; ,d2) s 1, 0ly—2)
> (LOOP(d1 ,d2) , g ox Ly 2)
> (dq :BRANCH(d2 :LOOP (d ,d2) ,NOOP) s g, olx— 1,y — 2])
> (LOAD(x) :EQ:NEG:BRANCH (d2 :LOOP(d1 ,d2) ,NOOP) , Loxe—1,y—2])

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (F:

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
I> (STORE(y) :LOOP (dy ,d2) ., 1,0)
> (LOOP(d; ,d2) s g, oy—1)
> (dy :BRANCH(dy : LOOP (dy ,d2) ,NOOP) . e oly—1)
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP (d; ,d2) ,NOOP) s 1,oly—1)
> <EQ:NEG:BRANCH(d2 :LOOP(d; ,d2) ,NOOP) ,2:1,0ly—1)
> (NEG:BRANCH (ds :LOOP(d; ,d2) , NOOP) , false, oy — 1)
> (BRANCH(ds :LOOP(d ,d2) ,NOOP) , true, oly — 1)
> (do :LOOP(dy ,d2) ;g olye—l)
> <LOAD(y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2), 2, 0y—1)
> <MULT:STORE(Y) :PUSH(1) : LOAD (x) : SUB: STORE(x) : LOOP (d1 ,d2) ,1:2, 0ly—1)
> (STORE(y) :PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) , 2, oly—1)
> (PUSH(1) :LOAD(x) : SUB: STORE(x) : LOOP (dy ,d2) s €, oy — 2)
> (LOAD (x) : SUB: STORE (x) : LOOP (dy ,d2) ; Lloly—2)
> (SUB:STORE (x) : LOOP (d1 ,d2) ,2:1, 0ly— 2)
D> (STORE(x) :LOOP(d; ,d2) , Loly—2)
> (LOOP(d1 ,d2) , g ox Ly 2)
I (dy :BRANCH(dy : LOOP (dy ,d2) ,NOOP) . e oxe— 1,y 2]
> (LOAD(x) :EQ:NEG:BRANCH (d2 :LOOP(d1 ,d2) ,NOOP) , Loxe—1,y—2])
I> (EQ:NEG:BRANCH(dy :LOOP (d; ,d2) ,NOOP) L1010, ok 1,y 2]

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (Factorial p

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
I> (STORE(y) :LOOP (dy ,d2) ., 1,0)
> (LOOP(d; ,d2) s g, oy—1)
> (dy :BRANCH(dy : LOOP (dy ,d2) ,NOOP) . e oly—1)
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP (d; ,d2) ,NOOP) s 1,oly—1)
> <EQ:NEG:BRANCH(d2 :LOOP(d; ,d2) ,NOOP) ,2:1,0ly—1)
> (NEG:BRANCH (ds :LOOP(d; ,d2) , NOOP) , false, oy — 1)
> (BRANCH(d5 :LOOP (dy ,d2) ,NOOP) , true, oly — 1)
> (d2:LOOP(d1 ,d2) , g, oly—1)
> <LOAD(y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2), 2, 0y—1)
> <MULT:STORE(Y) :PUSH(1) : LOAD (x) : SUB: STORE(x) : LOOP (d; ,d2) ,1:2, 0ly—1)
> (STORE(y) :PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) , 2, oly—1)
> (PUSH(1) :LOAD(x) : SUB: STORE(x) : LOOP (dy ,d2) s €, oy — 2)
&> (LOAD(x) : SUB: STORE (x) : LOOP (d1 , d3) ; Lloly—2)
> (SUB:STORE (x) : LOOP (d1 ,d2) ,2:1, 0ly— 2)
> (STORE(x) :LOOP(d; ,d2) s 1, 0ly—2)
> (LOOP(dy ,d2) , &ox—1ly—2])
I (dy :BRANCH(dy : LOOP (dy ,d2) ,NOOP) . e oxe— 1,y 2]
> (LOAD(x) :EQ:NEG:BRANCH (d2 :LOOP(d1 ,d2) ,NOOP) , Loxe—1,y—2])
> (EQ:NEG:BRANCH(dy :LOOP (d; ,d2) ,NOOP) L1010, ok 1,y 2]
> (NEG:BRANCH (dy : LOOP (d; ,d2) ,NOOP) , true, o[x — 1,y — 2])

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (Factorial p

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
D> (STORE(y) :LOOP(d; ,d2) , Lo)
> (LOOP(d; ,d2) , g, ofy—1)
> (dy :BRANCH(dy : LOOP (dy ,d2) ,NOOP) . e oly—1)
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP (d; ,d2) ,NOOP) s 1,oly—1)
> <EQ:NEG:BRANCH(d2 :LOOP(d; ,d2) ,NOOP) ,2:1,0ly—1)
> (NEG:BRANCH (ds :LOOP(d; ,d2) , NOOP) , false, oy — 1)
> (BRANCH(ds :LOOP(d ,d2) ,NOOP) , true, oly — 1)
> (d2:LOOP(d1 ,d2) , g, oly—1)
> <LOAD(y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2), 2, 0y—1)
> <MULT:STORE(Y) :PUSH(1) : LOAD (x) : SUB: STORE(x) : LOOP (d1 ,d2) ,1:2, 0ly—1)
> (STORE(y) :PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) , 2, oly—1)
> (PUSH(1) :LOAD(x) : SUB: STORE(x) : LOOP (dy ,d2) s €, oy — 2)
> (LOAD (x) : SUB: STORE (x) : LOOP (dy ,d2) ; Lloly—2)
> (SUB:STORE (x) : LOOP (d1 ,d2) ,2:1, 0ly— 2)
D> (STORE(x) :LOOP(d; ,d2) , Loly—2)
> (LOOP(d1 ,d2) , g ox Ly 2)
I (dy :BRANCH(dy : LOOP (dy ,d2) ,NOOP) . e oxe— 1,y 2]
> (LOAD(x) :EQ:NEG:BRANCH (d2 :LOOP(d1 ,d2) ,NOOP) , Loxe—1,y—2])
> (EQ:NEG:BRANCH(dy :LOOP (d; ,d2) ,NOOP) L1010, ok 1,y 2]
> (NEG:BRANCH (dy : LOOP (d; ,d2) ,NOOP) , true, o[x — 1,y — 2])
b> (BRANCH(da : LOOP (d; ,ds2) ,NOOP) , false, ofx = 1,y — 2])

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (Factorial p

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

(PUSH(1) : STORE(y) :LOOP (d1 ,d2) s g, 0)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(d; ,d2) s g, oy—1)
b (dy :BRANCH(ds :LOOP (dy ,d2) ,NOOP) . e oly—1)
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP (d; ,d2) ,NOOP) s 1,oly—1)
> <EQ:NEG:BRANCH(d2 :LOOP(d; ,d2) ,NOOP) ,2:1,0ly—1)
> <NEG:BRANCH(d2 :LOOP(d; ,d2) ,NOOP) , false, o[y — 1)
> (BRANCH(ds :LOOP(d; ,ds) ,NOOP) , true, oy — 1)
> (d2:LOOP(d1 ,d2) , g, oly—1)
> <LOAD(y) :MULT: STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d; ,d2), 2, 0y—1)
> <MULT:STORE(Y) :PUSH(1) : LOAD (x) : SUB: STORE(x) : LOOP (d1 ,d2) ,1:2, 0ly—1)
> (STORE(y) :PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) , 2, oly—1)
> (PUSH(1) :LOAD(x) : SUB: STORE(x) : LOOP (dy ,d2) s €, oy — 2)
1> (LOAD(x) : SUB: STORE(x) :LOOP(d; ,d2) y Loy—2)
> (SUB:STORE (x) : LOOP (d1 ,d2) ,2:1, 0ly— 2)
D> (STORE(x) :LOOP(d; ,d2) , Loly—2)
> (LOOP(d1 ,d2) , g ox Ly 2)
> (dq :BRANCH(d2 :LOOP (d ,d2) ,NOOP) s g, olx— 1,y — 2])
> (LOAD(x) :EQ:NEG:BRANCH (d2 :LOOP(d1 ,d2) ,NOOP) , Loxe—1,y—2])
> (EQ:NEG:BRANCH (d> :LOOP (d; ,d2) ,NOOP) ,1:1, ofx— 1,y — 2])
t> (NEG:BRANCH (d : LOOP (d; ,dy) ,NOOP) , true, ofx — 1,y — 2])
> (BRANCH(ds : LOOP(d; ,d2) ,NOOP) , false, o[x — 1,y — 2])
> (NOOP s g, olx—1,y+— 2])

m' Semantics and Verification of Software Summer Semester

Execution of Factorial Program

Example 17.1 (Factorial p

Let o € ¥ with o(z) = 2, d1 := PUSH(1) :LOAD(x) : EQ:NEG, and
dg := LOAD(x) : LOAD(y) :MULT: STORE (y) : PUSH(1) : LOAD(x) : SUB: STORE(x) .

NOOP
€

(PUSH(1) : STORE(y) : LOOP (dy ,d2) , &0)
D> (STORE(y) :LOOP(d1 ,d2) , Lo)
> (LOOP(d; ,d2) s g, oy—1)
D> (dy :BRANCH(d> : LOOP(d; ,d2) ,NOOP) . &oly—1)
> (LOAD(x) :EQ:NEG:BRANCH(d2 :LOOP (d; ,d2) ,NOOP) s 1,oly—1)
> (EQ:NEG:BRANCH(d» :LOOP(d; ,d2) ,NOOP) ,2:1, 0y 1)
D> (NEG:BRANCH(d> :LOOP(d; ,d2) ,NOOP) , false, oy — 1)
D> (BRANCH(dy :LOOP(d; ,ds) ,NOOP) , true, ofy — 1)
> (d2:LOOP(d1 ,d2) , g, oly—1)
> (LOAD(y) :MULT:STORE(y) : PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP(d1 ,d2), 2, oly > 1)
D> (MULT:STORE(y) :PUSH(1) : LOAD(x) : SUB: STORE (x) : LOOP (d1 ,d2) ,1:2, 0y 1)
> (STORE(y) :PUSH(1) :LOAD(x) : SUB: STORE(x) :LOOP (d; ,d2) , 2, oly—1)
> (PUSH(1) :LOAD(x) : SUB: STORE(x) : LOOP (dy ,d2) s €, oy — 2)
1> (LOAD(x) : SUB: STORE(x) :LOOP(d; ,d2) y Loy—2)
> (SUB:STORE (x) : LOOP (d1 ,d2) ,2:1, 0ly— 2)
D> (STORE(x) :LOOP(d; ,d2) , Loly—2)
> (LOOP(d1 ,d2) , g ox Ly 2)
> (dq :BRANCH(d2 :LOOP (d ,d2) ,NOOP) s g, olx— 1,y — 2])
> (LOAD(x) :EQ:NEG:BRANCH (d2 :LOOP(d1 ,d2) ,NOOP) , Loxe—1,y—2])
> (EQ:NEG:BRANCH (d> :LOOP (d; ,d2) ,NOOP) ,1:1, ofx— 1,y — 2])
D> (NEG:BRANCH(d> :LOOP(d; ,d2) ,NOOP) , true, o[x — 1,y — 2])
> (BRANCH(ds : LOOP(d; ,d2) ,NOOP) , false, o[x — 1,y — 2])
> (. o 1)
> (] o 1)

m' Semantics and Verification of Software Summer Semester

© Proof of Compiler Correctness

Rm Semantics and Verification of Software Summer Semester 2010 10

Correctness of T,[.]

Definition (Repetition: Semantics of arithm. expr. (Def. 5.2))

The (denotational) semantic functional for arithmetic expressions,
A[.] : AEzp — (X — Z),
is given by:
Alz]o = = Alar+az]o := Afar]o + Afaz]o
Wlz]o = o(z) Alar-as]o := Ufai]o — Afaz]o
Alai*az]o := Afai]o * Afaz]o

m' Semantics and Verification of Software Summer Semester 2010

Correctness of T,[.]

Definition (Repetition: Semantics of arithm. expr. (Def. 5.2))

The (denotational) semantic functional for arithmetic expressions,
A[.] : AEzp — (X — Z),
is given by:
Alz]o = = Alar+az]o := Afar]o + Afaz]o
Wlz]o = o(z) Alar-as]o := Ufai]o — Afaz]o
Alai*az]o := Afai]o * Afaz]o

Lemma 17.2 (Correctness of T,[.])

For every a € AFxp and o € X,

(Zula], e, 0) >* (e, U[a]o, o)

m' Semantics and Verification of Software Summer Semester 2010

Correctness of T,[.]

Definition (Repetition: Semantics of arithm. expr. (Def. 5.2))

The (denotational) semantic functional for arithmetic expressions,
A[.] : AEzp — (X — Z),
is given by:
Alz]o = = Alar+az]o := Afar]o + Afaz]o
Wlz]o = o(z) Alar-as]o := Ufai]o — Afaz]o
Alai*az]o := Afai]o * Afaz]o

Lemma 17.2 (Correctness of T,[.])

For every a € AFxp and o € X,

(Zula], e, 0) >* (e, U[a]o, o)

by induction on the syntactic structure of a (on the board)

m' Semantics and Verification of Software Summer Semester 2010 11

Correctness of T,[.] I

Definition (Repetition: Semantics of Boolean expr. (Def. 5.3))

The (denotational) semantic functional for Boolean expressions,
B[.] : BEzp — (X — B),
is given by:
Bft]o =t
_ _ Jtrue if Afar]o = Afaz]o
Blar=as]o := false otherwise
_ Jtrue if Afar]o > Afaz]o
Blar>az]o = false otherwise
_ Jtrue if B[b]o = false
B[-b]o := false otherwise
_ [true if B[b1]o = B[[ba]o = true
B[b1 Aboo = false otherwise
- false if %[[bl]]o- = %[[bQ]]O’ = false
B[b1 V bo]o = true otherwise

m Semantics and Verification of Software Summer Semester 2010 12

Correctness of T,[.] 1I

Lemma 17.3 (Correctness of T,[.])

For every b € BExp and o € X,

(T[b], &, 0) >* (e, B[b]o, o)

m' Semantics and Verification of Software Summer Semester 2010 13

Correctness of T,[.] 1I

Lemma 17.3 (Correctness of T,[.])

For every b € BExp and o € X,

(T[b], &, 0) >* (e, B[b]o, o)

by induction on the syntactic structure of b (omitted)

m' Semantics and Verification of Software Summer Semester 2010 13

Correctness of T [.] I

Definition (Repetition: Operational functional (Def. 4.1))

The functional of the operational semantics,
O[] : Cmd — (£ --» X),
assigns to every statement ¢ € C'md a partial state transformation
Ofc] : ¥ --» X, which is defined as follows:
o' if (¢,0) — o' for some o/ € &
Dlelr = {undeﬁned otherwise

m' Semantics and Verification of Software Summer Semester 2010

Correctness of T [.] I

Definition (Repetition: Operational functional (Def. 4.1))

The functional of the operational semantics,
O[] : Cmd — (£ --» X),
assigns to every statement ¢ € C'md a partial state transformation
Ofc] : ¥ --» X, which is defined as follows:
o' if (¢,0) — o' for some o/ € &
Dlelr = {undeﬁned otherwise

Definition (Repetition: Semantics of machine code (Def. 16.8))

The semantics of an instruction sequence is given by the mapping
M[.] : Code — (X --» %),

defined by

o if (d,e,0) >* (e,e,0")

undefined otherwise

M[d]o = {

m Semantics and Verification of Software Summer Semester 2010 14

Correctness of T.[.] 1I

Theorem 17.4 (Correctness of T.[.])

For every c € Cmd,
O] = M[Zc[]].-

m' Semantics and Verification of Software Summer Semester 2010 15

Correctness of T.[.] 1I

Theorem 17.4 (Correctness of T.[.])

For every c € Cmd,
O] = M[Zc[]].-

Proof carried out in two parts. First step: from source to machine code

For every c € Cmd and 0,0’ € ¥,

(e,0) — o' implies (T[], e,0) >* (g,e,0").

m Semantics and Verification of Software Summer Semester 2010 15

Correctness of T.[.] 1I

Theorem 17.4 (Correctness of T.[.])

For every c € Cmd,
O] = M[Zc[]].-

Proof carried out in two parts. First step: from source to machine code

For every c € Cmd and 0,0’ € ¥,

(e,0) — o' implies (T[], e,0) >* (g,e,0").

by induction on the derivation tree of (c,0) — ¢’ (on the board) O

m' Semantics and Verification of Software Summer Semester 2010 15

Correctness of T.[.] III

Second step: from machine to source code

For every c € Cmd, 0,0’ € X, and e € Stk,

(T[], e,0) >* (e, e,a’) implies (c,0) — o’ and e = &.

m' Semantics and Verification of Software Summer Semester 2010

Correctness of T.[.] III

Second step: from machine to source code

For every c € Cmd, 0,0’ € X, and e € Stk,

(T[], e,0) >* (e, e,a’) implies (c,0) — o’ and e = &.

by induction on the length of the computation sequence
(Zelcl,e,0) >* (e,e,0") (see Exercise 11) O

m Semantics and Verification of Software Summer Semester 2010

	Repetition: Abstract Machine & Compiler
	Another Execution Example
	Proof of Compiler Correctness

