Semantics and Verification of Software

Lecture 18: Dataflow Analysis I
(Introduction & Available Expressions Analysis)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Preliminaries on Dataflow Analysis

Rm Semantics and Verification of Software Summer Semester 2010

Dataflow Analysis: the Approach

o Traditional form of program analysis
@ Idea: describe how analysis information flows through program
@ Distinctions:

direction of flow: forward vs. backward analyses

procedures: interprocedural vs. intraprocedural analyses

quantification over paths: may (union) vs. must (intersection)
analyses

dependence on statement order: flow-sensitive vs. flow-insensitive
analyses

distinction of procedure calls: context-sensitive vs.
context-insensitive analyses

Rm Semantics and Verification of Software Summer Semester 2010

Labelled Programs

@ Goal: localization of analysis information
o Dataflow information will be associated with
o skip statements
@ assignments
¢ tests in conditionals (if) and loops (while)
These constructs will be called blocks.
@ Assume set of labels L with meta variable [€ L

(usually L = N)

Definition 18.1 (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

a:=z|x|a+ag | aj-as | ay*az € AExp
bu=1t]ar=as | a1>as | —b | by Aby | by Vby € BExp
c = [skip]' | [z :=a)' | e1;ca |

if [b]' then ¢, else ¢y | while [b]' do ¢ € Cmd
Here all labels in a statement ¢ € Cmd are assumed to be distinct.

m Semantics and Verification of Software Summer Semester 2010

A WHILE Program with Labels

Example 18.2

X := 6;
y :=7;
z := 0;

while x > 0 do
X :=x - 1;

vV = y;
while v > 0 do
v v 1;

m' Semantics and Verification of Software Summer Semester 2010

Representing Control Flow I

Every (labelled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels):

Definition 18.3 (Initial and final labels)

The mapping init : Cmd — L returns the initial label of a statement:
init([skip]’) :={
init([z :=a]') :=1
init(cy ;o) := init(cy)
init(if [b]' then c; else cp) = I
init(while [b]! do ¢) := [
The mapping final : Cmd — 2% returns the set of final labels of a

statement:
fmal([sklp]l) = {l}
final([z := a]') := {I}
flnal(cl, co) := final(e2)
final(if [b)' then c; else cp) := final(cy) U final(cs)
final(while [b]' do c) := {I}

m' Semantics and Verification of Software Summer Semester 2010

Representing Control Flow II

Definition 18.4 (Flow relation)

Given a statement ¢ € Cmd, the (control) flow relation flow(c) C L x L
is defined by

flow([sklp])
flow([z := a]') :

flow(01 ;C0) 1=

0
0
flow(c1) U flow(ce) U

1)
{(1,init(ca)) | I € final(c1)}
flow(if [b]' then c; else c3) := flow(c1) U flow(cz) U
{(l,init(c1)), (1, init(c2)) }
flow(while [b)' do ¢) := flow(c) U {(I,init(c))} U
{(",1) | U efinal(c)}

m' Semantics and Verification of Software Summer Semester 2010

Representing Control Flow III

Visualization by
(control) flow graph:

Semantics and Verification of Software Summer Semester 2010

Representing Control Flow IV

o To simplify the presentation we will often assume that the program
¢ € Cmd under consideration has an isolated entry, meaning that

{l e L|(l,init(c)) € flow(c)} =0

(which is the case when ¢ does not start with a while loop)
o Similarly: ¢ € Cmd has isolated exits if

{l' e L'| (1,I') € flow(c) for some [€ final(c)} =0

Example 18.6

has an isolated entry but not isolated exits

Semantics and Verification of Software Summer Semester 2010

© An Example: Available Expressions Analysis

Rm Semantics and Verification of Software Summer Semester 2010 10

Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example 18.7 (Available Expressions Analysis)

E : Z:E}; @ a+b available at label 3
while [y > a+b]3 do @ a+b not available at label 5
[a := a+1]%; @ possible optimization:
[x := atb]’ wvhile [y > x® do

m Semantics and Verification of Software Summer Semester 2010 11

Formalizing Available Expressions Analysis I

e Given ¢ € Cmd, L./Block./AExp,. denote the sets of all
labels/blocks/complex arithmetic expressions occurring in c,
respectively

o An expression ¢ is killed in a block B if any of the variables in a is
modified in B

o Formally: killag : Block. — 24L7p. ig defined by

killag ([skip]!) := 0
killag([z := a]!) := {d’ € AExp, |z € FV(a')}
ki”AE([b]l) = (Z)

@ An expression a is generated in a block B if it is evaluated in and

none of its variables are modified by B

o Formally: genag : Block. — 247 is defined by
genag([skip]’) == 0
genae([z = al') :={a |z ¢ FV(a)}
genae([b]') == AEup,

Rm Semantics and Verification of Software Summer Semester 2010 12

Formalizing Available Expressions Analysis I1

Example 18.8 (killag/genag functions)

1 o AExp, = {atb,a*b,a+1}
c=[x := arb]l; o L. killae(B!) genag(BY)
[y := axb]?; 1 0
. \ {a+b}
while [y > a+b]® do 2 0
- {a*Db}
[a := a+1]*; 3 0 +b
= a+b|° =5
[x a 4 {a+b,a*b,a+1} 0
5 0 {a+b}

m' Semantics and Verification of Software Summer Semester 2010 13

The Equation System I

o Analysis itself defined by setting up an equation system

@ For each | € L., AE; C AEzp, represents the set of available
expressions at the entry of block B!

@ Formally, for ¢ € CU'md with isolated entry:
AE, — {@ if I = init(c)
(e (AEy) | (I',1) € flow(c)} otherwise
where @y : 2487 — 2AFe denotes the transfer function of block
B given by
pr(A) = (A\ killag(B")) U genag (B")
@ Characterization of analysis:
forward: starts in init(c) and proceeds downwards
must: () in equation for AE,
flow-sensitive: results depending on order of assignments

o Later: solution not necessarily unique
—> choose greatest one

Rm Semantics and Verification of Software Summer Semester 2010

The Equation System II

0 if | = init(c)
{ﬂ{cpy(AEl/) (I',1) € flow(c)} otherwise

Reminder: AE; = |
v (E) = (B \ killae(B")) U genAE(Bl')

Example 18.9 (AE equation system)

c=[x := at+b]!; EA)\unat_ioél 5
[y := a*b)?; '
. AE; = 1 (AE;) = AE; U {a+b}
3 2 = $1 1 1
thale. iy a>+12]1:.b] do AE3 = p3(AE2) N 5(AEs)
S = (AE, U {a%b}) N (AE; U {a+b})
X i=a AE4 = p3(AE3) = AE3 U {a+b}
AEs; = ©4 AE,) = AE4 at+b, axb, a+1
le L. killag(BY) genpe(BY) (AE) M :
1 0 {a+b} Solution: AE; =0
2 0 {axb} AE; = {a+b}
3 0 {a+b} AE; = {a+b}
4 {a+b,axb,a+1} 0 AE, = {a+b}
0 {at+b} AEs = 0

m' Semantics and Verification of Software Summer Semester 2010 15

	Preliminaries on Dataflow Analysis
	An Example: Available Expressions Analysis

