Semantics and Verification of Software

Lecture 19: Dataflow Analysis II (Live Variables Analysis)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

© Repetition: Dataflow Analysis

Rm Semantics and Verification of Software Summer Semester 2010

Labelled Programs

@ Goal: localization of analysis information
o Dataflow information will be associated with
o skip statements
@ assignments
¢ tests in conditionals (if) and loops (while)
These constructs will be called blocks.
@ Assume set of labels L with meta variable [€ L

(usually L = N)

Definition (Labelled WHILE programs)

The syntax of labelled WHILE programs is defined by the following
context-free grammar:

a:=z|x|a+ag | aj-as | ay*az € AExp
bu=1t]ar=as | a1>as | —b | by Aby | by Vby € BExp
c = [skip]' | [z :=a)' | e1;ca |

if [b]' then ¢, else ¢y | while [b]' do ¢ € Cmd
Here all labels in a statement ¢ € Cmd are assumed to be distinct.

m Semantics and Verification of Software Summer Semester 2010

Representing Control Flow

Visualization by
(control) flow graph:

Semantics and Verification of Software Summer Semester 2010

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

m' Semantics and Verification of Software Summer Semester 2010

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

m' Semantics and Verification of Software Summer Semester 2010

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

[x := a+b]!;

[y o= axp]?;

while [y > a+b]3 do
[a := a+1]*;
[x := a+b]®

m Semantics and Verification of Software Summer Semester 2010

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

- 1.
% = 212}2 @ a+b available at label 3
while [y > a+b]3 do
[a := a+1]%;
[x := a+b]5

m Semantics and Verification of Software Summer Semester 2010

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

- 1.
E - 212}2 @ atb available at label 3
while [y > a+b]3 do @ at+b not available at label 5
[a := a+1]%;
[x := a+b]5

m Semantics and Verification of Software Summer Semester 2010

Goal of Available Expressions Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., complex) arithmetic
expressions

Example (Available Expressions Analysis)

E : Z:ﬂ; @ atb available at label 3
while [y > a+b]3 do @ a+b not available at label 5
[a := a+1]%; @ possible optimization:
[x := atb]’ wvhile [y > x® do

m Semantics and Verification of Software Summer Semester 2010

The Equation System

. 0 if | = init(c
Reminder: AR, = {n{w(AEl,) | (I, 1) € flow(c)} otherwise(:
ov(E) = (E\ killag(B")) U genAE(Bl,)

Example (AE equation system)

c=x := a+b]1; E'glElatE)%S:
[y .= a*b]2; AE1 =
. 3 9 = (pl(AEl) =AE, U {a+b}
Fhite b >+1aIP] d AE3 = ©a(AE2) N @s5(AE;5)
2 o=l — (A, U {ab)) 1 (AE; U {a+b})
[x := a+b] AE, = @3(AE3) = AE3 U {a+b}
AE5 = (,04(AE4) = AE4 \ {a+b, a*b, a+1}
L€ L. killae(B') genpe(B)
1 0 {a+b} Solution: AE; = ()
2 0 {axb} AE, = {a+b}
3 0 {a+b} AE; = {a+b}
4 {a+b,axb,a+1}) AE; = {a+b}
@ {a+b} AE5 _ @

m' Semantics and Verification of Software Summer Semester 2010

© Another Example: Live Variables Analysis

Rm Semantics and Verification of Software Summer Semester 2010

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

m' Semantics and Verification of Software Summer Semester 2010

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

o A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not re-define
the variable

m' Semantics and Verification of Software Summer Semester 2010

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

o A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not re-define
the variable

o All variables considered to be live at the end of the program
(alternative: restriction to output variables)

m' Semantics and Verification of Software Summer Semester 2010

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

o A variable is called live at the exit from a block if there exists a
path from the block to a use of the variable that does not re-define
the variable

o All variables considered to be live at the end of the program
(alternative: restriction to output variables)

@ Can be used for Dead Code Elimination:
remove assignments to non-live variables

m' Semantics and Verification of Software Summer Semester 2010

An Example

Example 19.1 (Live Variables Analysis)

m' Semantics and Verification of Software Summer Semester 2010

An Example

Example 19.1 (Live Variables Analysis)

[y := 4]2§ @ x not live at exit from label 1

m' Semantics and Verification of Software Summer Semester 2010

An Example

Example 19.1 (Live Variables Analysis)

[z =2
N 2
ly := 4] 3’ @ x not live at exit from label 1
= 107) .
E_}ff [y >]0]4 e o y live at exit from 2
[z := x]°
else
[z == y*y1%;
[x := 2"

m' Semantics and Verification of Software Summer Semester 2010

An Example

Example 19.1 (Live Variables Analysis)

[x := 2]1;
[y := 4]§§ @ x not live at exit from label 1
[le [y= :]014 then @ y live at exit from 2
[z := x]° @ x live at exit from 3
else
[z := y*y]%;
[x := 2"

m' Semantics and Verification of Software Summer Semester 2010

An Example

Example 19.1 (Live Variables Analysis)

[y := 4]§§ @ x not live at exit from label 1
[le [y= :]014 then @ y live at exit from 2
[z := x]° o x live at exit from 3
else @ z live at exits from 5 and 6
[z := y*y]%;
[x := 2"

m' Semantics and Verification of Software Summer Semester 2010

An Example

Example 19.1 (Live Variables Analysis)

[y := 4]?): @ x not live at exit from label 1
[le [y= :]014 then @ y live at exit from 2
[z := x]° o x live at exit from 3
else @ z live at exits from 5 and 6
x [z—:]7y *y)°%; @ possible optimization: remove [x := 2!

m' Semantics and Verification of Software Summer Semester 2010

Formalizing Live Variables Analysis I

o A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

Rm Semantics and Verification of Software Summer Semester 2010 10

Formalizing Live Variables Analysis I

o A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

o Formally: kill,y : Block. — 2V%¢ is defined by
ki||Lv([Skip]l) =10
kil ([z := a]') == {x}
killpy ([b]1) == 0

Rm Semantics and Verification of Software Summer Semester 2010 10

Formalizing Live Variables Analysis I

o A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill

o Formally: kiIILV Blorkc — 2Vare i defined by
kIIILV([sklp]) =
killyy ([]l> { }
klllLv([]) @

o Every reading access generates a live variable

Rm Semantics and Verification of Software Summer Semester 2010 10

Formalizing Live Variables Analysis I

o A variable on the left-hand side of an assignment is killed by the
assignment; tests and skip do not kill
o Formally: kill\y : Block. — 2V is defined by
ki||Lv([Skip]l) =10
kil ([z := a]') == {x}
killoy ([0)) == 0
o Every reading access generates a live variable

o Formally: gen,y : Block. — 2"%"¢ is defined by
genyy ([skip]') := 0
genyy([z :=a]') := FV(a)
genyy ([B]') == FV(b)

Rm Semantics and Verification of Software Summer Semester 2010

Formalizing Live Variables Analysis II

Example 19.2 (kill,y/gen,y functions)

m' Semantics and Verification of Software Summer Semester 2010 11

Formalizing Live Variables Analysis II

Example 19.2 (kill,y/gen,y functions)

c=[x := 2]'; o Var. ={x,y,z}
ly := 4%
[x := 1]3;
if [y > 0]* then
[z := x°
else
[z = y*y]%;
x = 2]

m' Semantics and Verification of Software Summer Semester 2010 11

Formalizing Live Variables Analysis II

Example 19.2 (kill,y/gen,y functions)

c=[x := 2]'; o Var.={x,y,z}

y := 4)?; o | € L killoy(B") genyy(B)

= = 1°; 1 {x} 0

if [y > 0]* then 2 {y} 0

[z := x]° 3 {x} 0

else 4 0 {v}

[z = y*yl°; 5 {z} {x}

[x := 2] 6 {z} {y}

T X {z}

m Semantics and Verification of Software Summer Semester 2010

The Equation System I

@ For each [€ L., LV; C Var,. represents the set of live variables at
the exit of block B!

Rm Semantics and Verification of Software Summer Semester 2010

The Equation System I

@ For each [€ L., LV; C Var,. represents the set of live variables at
the exit of block B!

@ Formally, for a program ¢ € C'md with isolated exits:
LV, — {Varc if [€ final(c)
Her(LVy) | (L,T) € flow(c)} otherwise
where oy : 2V0e — 2VaTe denotes the transfer function of block
BY, given by

or(V) := (V \ killy (B")) U geny (BY)

Rm Semantics and Verification of Software Summer Semester 2010

The Equation System I

@ For each [€ L., LV; C Var,. represents the set of live variables at
the exit of block B!

@ Formally, for a program ¢ € C'md with isolated exits:

LV, — Vare if 1 € final(c)
EZ Y Ufer (L) | (1,1) € flow(c)} otherwise

where oy : 2V0e — 2VaTe denotes the transfer function of block
BY, given by
(V) = (V \ killoy (B")) U genyy (BY)
@ Characterization of analysis:
backward: starts in final(c) and proceeds upwards
may: |J in equation for LV,
flow-sensitive: results depending on order of assignments

Rm Semantics and Verification of Software Summer Semester 2010

The Equation System I

@ For each [€ L., LV; C Var,. represents the set of live variables at
the exit of block B!

@ Formally, for a program ¢ € C'md with isolated exits:

LV, — Vare if 1 € final(c)
EZ Y Ufer (L) | (1,1) € flow(c)} otherwise

where oy : 2V0e — 2VaTe denotes the transfer function of block
BY, given by
(V) = (V \ killoy (B")) U genyy (BY)
@ Characterization of analysis:
backward: starts in final(c) and proceeds upwards
may: |J in equation for LV,

flow-sensitive: results depending on order of assignments
o Later: solution not necessarily unique

= choose least one

Rm Semantics and Verification of Software Summer Semester 2010

The Equation System II

Var. if [€ final(c)
U{er (LVy) | (1,1") € flow(c)} otherwise
Bl

Reminder: LV, { |
) Ugeny (BY)

/

(pl/(V) = (V \ kl||Lv(

Rm Semantics and Verification of Software Summer Semester 2010 13

The Equation System II

Var. if [€ final(c)

Reminder: LV, = {U{W’(L\/l’) (1,I') € flow(c)} otherwise

|
v (V) = (V \ kil (B")) U genyy (B")

Example 19.3 (LV equation system)

m' Semantics and Verification of Software Summer Semester 2010 13

The Equation System II

LV, = {Varc if [€ final(c)

Reminder: U{er(LVy) | (1,1") € flow(c)} otherwise

|
v (V) = (V \ kil (B")) U genyy (B")

Example 19.3 (LV equation system)

I € L. killoy(B!) gen,y (B')
{x} 0
{v} 0
{x} 0
0 {v}
{z} {x}
{z} {y}
{x} {z}

1
2
3
4
5
6
7
m' Semantics and Verification of Software Summer Semester 2010 13

The Equation System II

Reminder:

o (V) =

Var,.
Vi = {U{W(LVz)

|
(V \ kil (B")) U genyy (B")

if [€ final(c)
(I,I') € flow(c)} otherwise

Example 19.3 (LV equation system)

if [y > O] then

[z := %]
else

[z := y*y%;
[x := 2"

I € L. killoy(B!) gen,y (B')
1 {x} 0
2 {y} 0
3 {x} 0
4 0 {y}
5 {z} {=}
6 {z} {v}
7 {x} {z}
RWNTH

LVi = p2(LV2) = V2 \ {y}
LV2 = (pg(LVg) LV3 \ {X}
LV = a(LVy) = V4 U {y}
LV, = @5(LV5) U QOG(LVG)

= ((LV5\ {z}) U{x}) U ((LVe \ {z}) U {y})
LVs = o7(LV7) = (V7 \ {x}) U {z}
Ve = w7(LV7) = (LV7 \ {x}) U {z}

LV, = {x,y,z}

Semantics and Verification of Software

The Equation System II

. . | Vare if I € final(c)
Reminder: LVl_{U{(pl/(LVl) (1) € flow(c)} otherwise

|
pu (V) = (V \ kil (B")) U geny (B")

Example 19.3 (LV equation system)

c=[x := 211y := 4% V1 = @2(LV2) = LV2 \ {y}
[x := 1]3; LV = 3(LV3) = LV5 \ {x}
if [y > 0]* then LVs = pa(LV4) = LV4 U {y}
[Z = X]5 LV, = @5(LV5) U QOG(LVG)
else = (Vs \ {z}) U{x}) U ((LVe \ {z}) U{y})
[z := y*xy]5; LVs = ¢7(LV7) = (LV7 \ {x}) U {z}
[x := 2] Ve = ¢7(LV7) = (LV7 \ {x}) U {z}
le L. klllLv() gen,_V(Bl) LV7 = {X7Y7Z}

0

{v}
{x, v}
{x, v}

{x} 0 Solution: LV,
{v} 0 LV,

{v} LV4
{z} {x} Vs = {y,z}
{z} {v} Ve = {y,z}

1
2
3
4
5
6
7 {x} {z} V7 = {x,y,2}

m' Semantics and Verification of Software Summer Semester 2010 13

© Heading for a Dataflow Analysis Framework

Rm Semantics and Verification of Software Summer Semester 2010 14

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities

Rm Semantics and Verification of Software Summer Semester 2010 15

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities

—> Look for underlying framework

Rm Semantics and Verification of Software Summer Semester 2010 15

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
—> Look for underlying framework

@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Rm Semantics and Verification of Software Summer Semester 2010 15

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
—> Look for underlying framework

@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

o Overall pattern: for c € Cmd and [€ L., the analysis
information (Al) is described by equations of the form

Al = 2 ifle B
P W er (Aly) | (1) € F} otherwise

where

the set of extremal labels, E, is {init(c)} or final(c)
¢ specifies the extremal analysis information

the combination operator, | |, is [or

¢ denotes the transfer function of block BY

the flow relation F is flow(c) or flow’ (c)

(={,1) 1] V) e flow(c)})

Rm Semantics and Verification of Software Summer Semester 2010

¢ © ¢ ¢ ¢

Characterization of Analyses

@ Direction of information flow:
o forward:
@ F = flow(c)
@ Al; concerns entry of B!
@ c has isolated entry

o backward:
o F = flow"(c)
@ Al; concerns exit of B!
@ ¢ has isolated exits

Rm Semantics and Verification of Software Summer Semester 2010 16

Characterization of Analyses

@ Direction of information flow:
o forward:
@ F = flow(c)
@ Al; concerns entry of B!
@ c has isolated entry

@ backward:
o F = flow"(c)
@ Al; concerns exit of B!
@ ¢ has isolated exits

o Quantification over paths:

e may:
o LU=U
@ property satisfied by some path
@ interested in least solution (later)

9 must:
o LI=nN
@ property satisfied by all paths
@ interested in greatest solution (later)

Rm Semantics and Verification of Software Summer Semester 2010

Goal: solve dataflow equation system by fixpoint iteration

@ Introduce partial order for comparing analysis results

Rm Semantics and fication of Software Summer Semester 2010

Goal: solve dataflow equation system by fixpoint iteration
@ Introduce partial order for comparing analysis results

© Establish least upper bound as combination operator

Rm Semantics and fication of Software Summer Semester 2010

Goal: solve dataflow equation system by fixpoint iteration
@ Introduce partial order for comparing analysis results
© Establish least upper bound as combination operator

© Ensure monotonicity of transfer functions

Rm Semantics and fication of Software Summer Semester 2010

Goal: solve dataflow equation system by fixpoint iteration
@ Introduce partial order for comparing analysis results
© Establish least upper bound as combination operator
© Ensure monotonicity of transfer functions

@ Guarantee termination of fixpoint iteration (and continuity of
functional) by ascending chain condition

Rm Semantics and Verification of Software Summer Semester 2010

Goal: solve dataflow equation system by fixpoint iteration
@ Introduce partial order for comparing analysis results
© Establish least upper bound as combination operator
© Ensure monotonicity of transfer functions

@ Guarantee termination of fixpoint iteration (and continuity of
functional) by ascending chain condition

@ Optimize fixpoint iteration by worklist algorithm

Rm Semantics and Verification of Software Summer Semester 2010

	Repetition: Dataflow Analysis
	Another Example: Live Variables Analysis
	Heading for a Dataflow Analysis Framework

