Semantics and Verification of Software

Lecture 1: Introduction

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Preliminaries

Rm mantics and Verification of Software Summer Semester

@ Lectures: Thomas Noll

o Lehrstuhl fiir Informatik 2, Room 4211
o E-mail noll@cs.rwth-aachen.de

o Phone (0241)80-21213
@ Exercise classes:

o Christina Jansen (christina.jansen@cs.rwth-aachen.de)

Rm Semantics and Verification of Software Summer Semester 2010

noll@cs.rwth-aachen.de
christina.jansen@cs.rwth-aachen.de

Target Audience

@ Master/Diplom programme Informatik
o Theoretische Informatik
o Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung (Diplom)
o Master programme Software Systems FEngineering
o Theoretical CS
o Specialization in Formal Methods, Programming Languages and
Software Validation
@ In general:
o interest in formal models for programming languages
o application of mathematical reasoning methods
o FExpected: basic knowledge in
e essential concepts of imperative programming languages
o formal languages and automata theory
e mathematical logic

Rm Semantics and Verification of Software Summer Semester 2010

Organization

@ Schedule:

o Lecture Wed 10:00-11:30 AH 6 (starting April 21)
o Lecture Thu 15:00-16:30 AH 5 (starting April 15)
o Exercise class Mon 10:00-11:30 AH 2 (starting April 26)

1st assignment sheet: next Monday (April 19)

Work on assignments in groups of three
Examination (8 [67] ECTS credit points):

e oral
e date by agreement

©

Admission requires at least 50% of the points in the exercises

©

Solutions to exercises and exam in English or German

Rm Semantics and Verification of Software Summer Semester 2010

© Introduction

Rm mantics and Verification of Software Summer Semester

Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
= Compiler Construction
Semantics: “What does this program mean?”
(execution evokes state transformations of an [abstract]
machine)
= This course
Pragmatics: @ length and understandability of programs
o learnability of programming language
@ appropriateness for specific applications, ...
= Software Engineering

Historic development:
o Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler /interpreter
@ Formal semantics since 1970s

(operational/denotational /axiomatic)
Rm Semantics and Verification of Software Summer Semester 2010

Motivation for Rigorous Formal Treatment I

@ How often will the following loop be traversed?
for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

© What if p = nil in the following program?
while p <> nil and p~.key < val do ...

Pascal: strict boolean operations 4
Modula: non-strict boolean operations o

Semantics and Verification of Software Summer Semester 2010

Motivation for Rigorous Formal Treatment II

@ Support for development of
@ new programming languages: missing details, ambiguities and
inconsistencies can be recognized
e compilers: automatic compiler generation from appropriately
defined semantics
e programs: exact understanding of semantics avoids uncertainties in
the implementation of algorithms
@ Support for correctness proofs of
e programs: comparison of program semantics with desired behaviour
(e.g., termination properties)
e compilers:

. compiler .
programming language — machine code
semantics | | (simple) semantics
. ? .
meaning = meaning

¢ optimizing transformations:

optimization
code — code
semantics | | semantics
. ? .
meaning = meaning

Rm Semantics and fication of Software Summer Semester 2010

Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

Denotational semantics: mathematical definition of input/output

relation of the program by induction on its syntactic
structure (D. Scott, C. Strachey)

Axiomatic semantics: formalization of special properties of the
program by logical formulae (assertions and proof rules;
R. Floyd, T. Hoare)

Rm Semantics and Verification of Software Summer Semester 2010 10

Overview of the Course

© The imperative model language WHILE

© Operational semantics of WHILE

@ Denotational semantics of WHILE

@ Equivalence of operational and denotational semantics
@ Axiomatic semantics of WHILE

@ Extensions: procedures and dynamic data structures
© Applications:

o Dataflow analysis
o Compiler correctness

m' Semantics and Verification of Software Summer Semester 2010

(also see the collection [“Handapparat”] at the CS Library)

o Formal semantics:
o G. Winskel: The Formal Semantics of Programming Languages,
The MIT Press, 1996
o Dataflow analysis:
o F. Nielson, H.R. Nielson, C. Hankin: Principles of Program
Analysis, 2nd ed., Springer, 2005
o Compiler correctness

e H.R. Nielson, F. Nielson: Semantics with Applications: A Formal
Introduction, Wiley, 1992

m' Semantics and Verification of Software Summer Semester 2010 12

© The Imperative Model Language WHILE

Rm Semantics and fication of Software Summer Semester 2010 13

Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers z={0,1,—-1,...} =z
Truth values B = {true, false} ¢
Variables Var = {x,y,...} =
Arithmetic expressions AEzp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) ¢

m' Semantics and Verification of Software Summer Semester 2010 14

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context-free grammar:

a:=z|x|ar+ag | ai-as | ar*az € AExp
b=t ‘ a1=ay ‘ a1>a9 | —b ‘ b1 N by ‘ b1 V by € BExp
cu=skip | x :=a|c1;co | if b then ¢; else ¢ | while b do ¢ € Cmd

Remarks: we assume that
o the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)
@ the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

m Semantics and Verification of Software Summer Semester 2010 15

A WHILE Program and its Flow Diagram

X := 6;
y :=T;
z := 0;
while x > 0 do
X :=x - 1;
vV i=y;
while v > 0 do
v :=v - 1;
z =z + 1

Effect: z := x x y = 42

m' Semantics and Verification of Software Summer Semester 2010

	Preliminaries
	Introduction
	The Imperative Model Language WHILE

