
Semantics and Verification of Software

Lecture 20: Dataflow Analysis III (The Framework)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/


Outline

1 Repetition: Heading for a Dataflow Analysis Framework

2 Order-Theoretic Foundations

3 The Framework

4 Solving Dataflow Equation Systems

Semantics and Verification of Software Summer Semester 2010 2



Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Lc, the analysis
information (AI) is described by equations of the form

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

where

the set of extremal labels, E, is {init(c)} or final(c)
ι specifies the extremal analysis information
the combination operator,

⊔

, is
⋂

or
⋃

ϕl′ denotes the transfer function of block Bl
′

the flow relation F is flow(c) or flowR(c)
(:= {(l′, l) | (l, l′) ∈ flow(c)})

Semantics and Verification of Software Summer Semester 2010 3



Characterization of Analyses

Direction of information flow:
forward:

F = flow(c)
AIl concerns entry of B

l

c has isolated entry

backward:

F = flow
R(c)

AIl concerns exit of B
l

c has isolated exits

Quantification over paths:
may:

F

=
S

property satisfied by some path
interested in least solution (later)

must:
F

=
T

property satisfied by all paths
interested in greatest solution (later)

Semantics and Verification of Software Summer Semester 2010 4



Roadmap

Goal: solve dataflow equation system by fixpoint iteration

1 Introduce partial order for comparing analysis results

2 Establish least upper bound as combination operator

3 Ensure monotonicity of transfer functions

4 Guarantee termination of fixpoint iteration (and continuity of
functional) by Ascending Chain Condition

5 Optimize fixpoint iteration by worklist algorithm

Semantics and Verification of Software Summer Semester 2010 5



Outline

1 Repetition: Heading for a Dataflow Analysis Framework

2 Order-Theoretic Foundations

3 The Framework

4 Solving Dataflow Equation Systems

Semantics and Verification of Software Summer Semester 2010 6



Partial Orders

The domain of analysis information usually forms a partial order where
the ordering relation compares the “precision” of information.

Definition 20.1 (Partial order; repetition of Def. 7.1)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Semantics and Verification of Software Summer Semester 2010 7



Partial Orders

The domain of analysis information usually forms a partial order where
the ordering relation compares the “precision” of information.

Definition 20.1 (Partial order; repetition of Def. 7.1)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 20.2

1 (Live Variables) (2Varc ,⊆) is a (non-total) partial order

Semantics and Verification of Software Summer Semester 2010 7



Partial Orders

The domain of analysis information usually forms a partial order where
the ordering relation compares the “precision” of information.

Definition 20.1 (Partial order; repetition of Def. 7.1)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 20.2

1 (Live Variables) (2Varc ,⊆) is a (non-total) partial order

2 (Available Expressions) (2AExp
c ,⊇) is a (non-total) partial order

Semantics and Verification of Software Summer Semester 2010 7



Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 20.3 ((Least) upper bound; repetition of Def. 7.4)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

Semantics and Verification of Software Summer Semester 2010 8



Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 20.3 ((Least) upper bound; repetition of Def. 7.4)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d′ for every upper bound d′ of S

(notation: d =
⊔

S).

Semantics and Verification of Software Summer Semester 2010 8



Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 20.3 ((Least) upper bound; repetition of Def. 7.4)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d′ for every upper bound d′ of S

(notation: d =
⊔

S).

Example 20.4

1 (Live Variables) (D,v) = (2Varc ,⊆). Given V1, . . . , Vn ⊆ Var c,
⊔

{V1, . . . , Vn} =
⋃

{V1, . . . , Vn}

Semantics and Verification of Software Summer Semester 2010 8



Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 20.3 ((Least) upper bound; repetition of Def. 7.4)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d′ for every upper bound d′ of S

(notation: d =
⊔

S).

Example 20.4

1 (Live Variables) (D,v) = (2Varc ,⊆). Given V1, . . . , Vn ⊆ Var c,
⊔

{V1, . . . , Vn} =
⋃

{V1, . . . , Vn}

2 (Avail. Expr.) (D,v) = (2AExpc ,⊇). Given A1, . . . , An ⊆ AExpc,
⊔

{A1, . . . , An} =
⋂

{A1, . . . , An}

Semantics and Verification of Software Summer Semester 2010 8



Complete Lattices

Since {ϕl′(AIl′) | (l′, l) ∈ F} is not necessarily a chain (Def. 7.4), chain
completeness (Def. 7.6) is not sufficient for guaranteeing the
well-definedness of the equation system. A stronger property is
required:

Definition 20.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D

have least upper bounds. In this case,
⊥ :=

⊔

∅
denotes the least element of D.

Semantics and Verification of Software Summer Semester 2010 9



Complete Lattices

Since {ϕl′(AIl′) | (l′, l) ∈ F} is not necessarily a chain (Def. 7.4), chain
completeness (Def. 7.6) is not sufficient for guaranteeing the
well-definedness of the equation system. A stronger property is
required:

Definition 20.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D

have least upper bounds. In this case,
⊥ :=

⊔

∅
denotes the least element of D.

Example 20.6

1 (Live Variables)
(D,v) = (2Varc ,⊆) is a complete lattice with ⊥ = ∅

Semantics and Verification of Software Summer Semester 2010 9



Complete Lattices

Since {ϕl′(AIl′) | (l′, l) ∈ F} is not necessarily a chain (Def. 7.4), chain
completeness (Def. 7.6) is not sufficient for guaranteeing the
well-definedness of the equation system. A stronger property is
required:

Definition 20.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D

have least upper bounds. In this case,
⊥ :=

⊔

∅
denotes the least element of D.

Example 20.6

1 (Live Variables)
(D,v) = (2Varc ,⊆) is a complete lattice with ⊥ = ∅

2 (Available Expressions)
(D,v) = (2AExpc ,⊇) is a complete lattice with ⊥ = AExpc

Semantics and Verification of Software Summer Semester 2010 9



Duality in Complete Lattices

Dual concept of least upper bound: greatest lower bound

Definitions:

An element d ∈ D is called a lower bound of S ⊆ D if d v s for
every s ∈ S (notation: d v S).
A lower bound d is called greatest lower bound (GLB) or infimum
of S if d′ v d for every lower bound d′ of S (notation: d =

d
S).

Semantics and Verification of Software Summer Semester 2010 10



Duality in Complete Lattices

Dual concept of least upper bound: greatest lower bound

Definitions:

An element d ∈ D is called a lower bound of S ⊆ D if d v s for
every s ∈ S (notation: d v S).
A lower bound d is called greatest lower bound (GLB) or infimum
of S if d′ v d for every lower bound d′ of S (notation: d =

d
S).

Examples:

(Live Variables) (D,v) = (2Varc ,⊆),d
{V1, . . . , Vn} =

⋂

{V1, . . . , Vn}
(Available Expressions) (D,v) = (2AExp

c ,⊇),d
{A1, . . . , An} =

⋃

{A1, . . . , An}

Semantics and Verification of Software Summer Semester 2010 10



Duality in Complete Lattices

Dual concept of least upper bound: greatest lower bound

Definitions:

An element d ∈ D is called a lower bound of S ⊆ D if d v s for
every s ∈ S (notation: d v S).
A lower bound d is called greatest lower bound (GLB) or infimum
of S if d′ v d for every lower bound d′ of S (notation: d =

d
S).

Examples:

(Live Variables) (D,v) = (2Varc ,⊆),d
{V1, . . . , Vn} =

⋂

{V1, . . . , Vn}
(Available Expressions) (D,v) = (2AExp

c ,⊇),d
{A1, . . . , An} =

⋃

{A1, . . . , An}

Lemma: the following are equivalent:

(D,v) is a complete lattice
(i.e., every subset of D has a least upper bound)
Every subset of D has a greatest lower bound

Semantics and Verification of Software Summer Semester 2010 10



Duality in Complete Lattices

Dual concept of least upper bound: greatest lower bound

Definitions:

An element d ∈ D is called a lower bound of S ⊆ D if d v s for
every s ∈ S (notation: d v S).
A lower bound d is called greatest lower bound (GLB) or infimum
of S if d′ v d for every lower bound d′ of S (notation: d =

d
S).

Examples:

(Live Variables) (D,v) = (2Varc ,⊆),d
{V1, . . . , Vn} =

⋂

{V1, . . . , Vn}
(Available Expressions) (D,v) = (2AExp

c ,⊇),d
{A1, . . . , An} =

⋃

{A1, . . . , An}

Lemma: the following are equivalent:

(D,v) is a complete lattice
(i.e., every subset of D has a least upper bound)
Every subset of D has a greatest lower bound

Corollary: every complete lattice has a greatest element > :=
d

∅

Semantics and Verification of Software Summer Semester 2010 10



Chains

Chains are generated by the approximation of the analysis information
in the fixpoint iteration.

Definition 20.7 (Chain; repetition of Def. 7.4 and 7.6)

Let (D,v) be a partial order.

1 A subset S ⊆ D is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).

Semantics and Verification of Software Summer Semester 2010 11



Chains

Chains are generated by the approximation of the analysis information
in the fixpoint iteration.

Definition 20.7 (Chain; repetition of Def. 7.4 and 7.6)

Let (D,v) be a partial order.

1 A subset S ⊆ D is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).

2 (D,v) is called chain complete (CCPO) if each of its chains has a
least upper bound.

Semantics and Verification of Software Summer Semester 2010 11



Chains

Chains are generated by the approximation of the analysis information
in the fixpoint iteration.

Definition 20.7 (Chain; repetition of Def. 7.4 and 7.6)

Let (D,v) be a partial order.

1 A subset S ⊆ D is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).

2 (D,v) is called chain complete (CCPO) if each of its chains has a
least upper bound.

Corollary 20.8

Every complete lattice is a CCPO.

Semantics and Verification of Software Summer Semester 2010 11



Monotonicity of Functions

The monotonicity of transfer functions (which formalize the impact of
a block in the program on the analysis information) excludes
“oscillating behavior” in fixpoint iteration.

Definition 20.9 (Monotonicity; repetition of Def. 8.1)

Let (D,v) and (D′,v′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ F (d1) v
′ F (d2).

Semantics and Verification of Software Summer Semester 2010 12



Monotonicity of Functions

The monotonicity of transfer functions (which formalize the impact of
a block in the program on the analysis information) excludes
“oscillating behavior” in fixpoint iteration.

Definition 20.9 (Monotonicity; repetition of Def. 8.1)

Let (D,v) and (D′,v′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ F (d1) v
′ F (d2).

Example 20.10

1 (Live Variables) (D,v) = (2Varc ,⊆)
Each transfer function ϕl′(V ) := (V \ killLV(Bl′)) ∪ genLV(Bl′) is
obviously monotonic

Semantics and Verification of Software Summer Semester 2010 12



Monotonicity of Functions

The monotonicity of transfer functions (which formalize the impact of
a block in the program on the analysis information) excludes
“oscillating behavior” in fixpoint iteration.

Definition 20.9 (Monotonicity; repetition of Def. 8.1)

Let (D,v) and (D′,v′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ F (d1) v
′ F (d2).

Example 20.10

1 (Live Variables) (D,v) = (2Varc ,⊆)
Each transfer function ϕl′(V ) := (V \ killLV(Bl′)) ∪ genLV(Bl′) is
obviously monotonic

2 (Available Expressions) (D,v) = (2AExpc ,⊇)
Each transfer function ϕl′(A) := (A \ killAE(Bl′)) ∪ genAE(Bl′) is
obviously monotonic

Semantics and Verification of Software Summer Semester 2010 12



The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain
Condition.

Definition 20.11 (Ascending Chain Condition)

A partial order (D,v) satisfies the Ascending Chain Condition (ACC)
if each ascending chain d1 v d2 v . . . eventually stabilizes, i.e., there
exists n ∈ N such that dn = dn+1 = . . .

Semantics and Verification of Software Summer Semester 2010 13



The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain
Condition.

Definition 20.11 (Ascending Chain Condition)

A partial order (D,v) satisfies the Ascending Chain Condition (ACC)
if each ascending chain d1 v d2 v . . . eventually stabilizes, i.e., there
exists n ∈ N such that dn = dn+1 = . . .

Example 20.12

1 (Live Variables) (D,v) = (2Varc ,⊆) satisfies ACC since Var c

(unlike Var) is finite

Semantics and Verification of Software Summer Semester 2010 13



The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain
Condition.

Definition 20.11 (Ascending Chain Condition)

A partial order (D,v) satisfies the Ascending Chain Condition (ACC)
if each ascending chain d1 v d2 v . . . eventually stabilizes, i.e., there
exists n ∈ N such that dn = dn+1 = . . .

Example 20.12

1 (Live Variables) (D,v) = (2Varc ,⊆) satisfies ACC since Var c

(unlike Var) is finite

2 (Available Expressions) (D,v) = (2AExpc ,⊇) satisfies ACC since
AExpc (unlike AExp) is finite

Semantics and Verification of Software Summer Semester 2010 13



Fixpoints

Theorem 20.13 (Fixpoint Theorem; repetition of Thm. 8.7)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{Fn (
⊔

∅) | n ∈ N}
is the least fixpoint of F .

Semantics and Verification of Software Summer Semester 2010 14



Fixpoints

Theorem 20.13 (Fixpoint Theorem; repetition of Thm. 8.7)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{Fn (
⊔

∅) | n ∈ N}
is the least fixpoint of F .

Definition 20.14 (Continuity; repetition of Def. 8.5)

Let (D,v) and (D′,v′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,v) and (D′,v′)) if, for every
non-empty chain S ⊆ D,

F (
⊔

S) =
⊔

F (S).

Semantics and Verification of Software Summer Semester 2010 14



Fixpoints

Theorem 20.13 (Fixpoint Theorem; repetition of Thm. 8.7)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{Fn (
⊔

∅) | n ∈ N}
is the least fixpoint of F .

Definition 20.14 (Continuity; repetition of Def. 8.5)

Let (D,v) and (D′,v′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,v) and (D′,v′)) if, for every
non-empty chain S ⊆ D,

F (
⊔

S) =
⊔

F (S).

Corollary 20.15

Monotonic functions on partial orders that satisfy ACC are continuous.

Semantics and Verification of Software Summer Semester 2010 14



Fixpoints

Theorem 20.13 (Fixpoint Theorem; repetition of Thm. 8.7)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{Fn (
⊔

∅) | n ∈ N}
is the least fixpoint of F .

Definition 20.14 (Continuity; repetition of Def. 8.5)

Let (D,v) and (D′,v′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,v) and (D′,v′)) if, for every
non-empty chain S ⊆ D,

F (
⊔

S) =
⊔

F (S).

Corollary 20.15

Monotonic functions on partial orders that satisfy ACC are continuous.

Proof.

on the board

Semantics and Verification of Software Summer Semester 2010 14



Outline

1 Repetition: Heading for a Dataflow Analysis Framework

2 Order-Theoretic Foundations

3 The Framework

4 Solving Dataflow Equation Systems

Semantics and Verification of Software Summer Semester 2010 15



Dataflow Systems I

Definition 20.16 (Dataflow system)

A dataflow system S = (L, E, F, (D,v), ι, ϕ) consists of

a finite set of (program) labels L (here: Lc),

a set of extremal labels E ⊆ L (here: {init(c)} or final(c)),

a flow relation F ⊆ L × L (here: flow(c) or flowR(c)),

a complete lattice (D,v) that satisfies ACC
(with LUB operator

⊔

and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ L} of type
ϕl : D → D.

Semantics and Verification of Software Summer Semester 2010 16



Dataflow Systems II

Example 20.17

Problem Available Expressions Live Variables

E {init(c)} final(c)

F flow(c) flowR(c)

D 2AExpc 2Varc

v ⊇ ⊆
⊔ ⋂ ⋃

⊥ AExpc ∅
ι ∅ Var c

ϕl ϕl(d) = (d \ kill(Bl)) ∪ gen(Bl)

Semantics and Verification of Software Summer Semester 2010 17


	Repetition: Heading for a Dataflow Analysis Framework
	Order-Theoretic Foundations
	The Framework
	Solving Dataflow Equation Systems

