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Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Overall pattern: for c ∈ Cmd and l ∈ Lc, the analysis
information (AI) is described by equations of the form

AIl =

{

ι if l ∈ E
⊔

{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

where

the set of extremal labels, E, is {init(c)} or final(c)
ι specifies the extremal analysis information
the combination operator,

⊔

, is
⋂

or
⋃

ϕl′ denotes the transfer function of block Bl
′

the flow relation F is flow(c) or flowR(c)
(:= {(l′, l) | (l, l′) ∈ flow(c)})
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Characterization of Analyses

Direction of information flow:
forward:

F = flow(c)
AIl concerns entry of B

l

c has isolated entry

backward:

F = flow
R(c)

AIl concerns exit of B
l

c has isolated exits

Quantification over paths:
may:

F

=
S

property satisfied by some path
interested in least solution (later)

must:
F

=
T

property satisfied by all paths
interested in greatest solution (later)
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Roadmap

Goal: solve dataflow equation system by fixpoint iteration

1 Introduce partial order for comparing analysis results

2 Establish least upper bound as combination operator

3 Ensure monotonicity of transfer functions

4 Guarantee termination of fixpoint iteration (and continuity of
functional) by Ascending Chain Condition

5 Optimize fixpoint iteration by worklist algorithm
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Partial Orders

The domain of analysis information usually forms a partial order where
the ordering relation compares the “precision” of information.

Definition 20.1 (Partial order; repetition of Def. 7.1)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.
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Partial Orders

The domain of analysis information usually forms a partial order where
the ordering relation compares the “precision” of information.

Definition 20.1 (Partial order; repetition of Def. 7.1)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 20.2

1 (Live Variables) (2Varc ,⊆) is a (non-total) partial order
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Partial Orders

The domain of analysis information usually forms a partial order where
the ordering relation compares the “precision” of information.

Definition 20.1 (Partial order; repetition of Def. 7.1)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 20.2

1 (Live Variables) (2Varc ,⊆) is a (non-total) partial order

2 (Available Expressions) (2AExp
c ,⊇) is a (non-total) partial order
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Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 20.3 ((Least) upper bound; repetition of Def. 7.4)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).
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Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 20.3 ((Least) upper bound; repetition of Def. 7.4)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d′ for every upper bound d′ of S

(notation: d =
⊔

S).
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Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 20.3 ((Least) upper bound; repetition of Def. 7.4)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d′ for every upper bound d′ of S

(notation: d =
⊔

S).

Example 20.4

1 (Live Variables) (D,v) = (2Varc ,⊆). Given V1, . . . , Vn ⊆ Var c,
⊔

{V1, . . . , Vn} =
⋃

{V1, . . . , Vn}
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Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 20.3 ((Least) upper bound; repetition of Def. 7.4)

Let (D,v) be a partial order and S ⊆ D.

1 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

2 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d′ for every upper bound d′ of S

(notation: d =
⊔

S).

Example 20.4

1 (Live Variables) (D,v) = (2Varc ,⊆). Given V1, . . . , Vn ⊆ Var c,
⊔

{V1, . . . , Vn} =
⋃

{V1, . . . , Vn}

2 (Avail. Expr.) (D,v) = (2AExpc ,⊇). Given A1, . . . , An ⊆ AExpc,
⊔

{A1, . . . , An} =
⋂

{A1, . . . , An}
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Complete Lattices

Since {ϕl′(AIl′) | (l′, l) ∈ F} is not necessarily a chain (Def. 7.4), chain
completeness (Def. 7.6) is not sufficient for guaranteeing the
well-definedness of the equation system. A stronger property is
required:

Definition 20.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D

have least upper bounds. In this case,
⊥ :=

⊔

∅
denotes the least element of D.
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Complete Lattices

Since {ϕl′(AIl′) | (l′, l) ∈ F} is not necessarily a chain (Def. 7.4), chain
completeness (Def. 7.6) is not sufficient for guaranteeing the
well-definedness of the equation system. A stronger property is
required:

Definition 20.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D

have least upper bounds. In this case,
⊥ :=

⊔

∅
denotes the least element of D.

Example 20.6

1 (Live Variables)
(D,v) = (2Varc ,⊆) is a complete lattice with ⊥ = ∅
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Complete Lattices

Since {ϕl′(AIl′) | (l′, l) ∈ F} is not necessarily a chain (Def. 7.4), chain
completeness (Def. 7.6) is not sufficient for guaranteeing the
well-definedness of the equation system. A stronger property is
required:

Definition 20.5 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D

have least upper bounds. In this case,
⊥ :=

⊔

∅
denotes the least element of D.

Example 20.6

1 (Live Variables)
(D,v) = (2Varc ,⊆) is a complete lattice with ⊥ = ∅

2 (Available Expressions)
(D,v) = (2AExpc ,⊇) is a complete lattice with ⊥ = AExpc
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Duality in Complete Lattices

Dual concept of least upper bound: greatest lower bound

Definitions:

An element d ∈ D is called a lower bound of S ⊆ D if d v s for
every s ∈ S (notation: d v S).
A lower bound d is called greatest lower bound (GLB) or infimum
of S if d′ v d for every lower bound d′ of S (notation: d =

d
S).

Semantics and Verification of Software Summer Semester 2010 10



Duality in Complete Lattices

Dual concept of least upper bound: greatest lower bound

Definitions:

An element d ∈ D is called a lower bound of S ⊆ D if d v s for
every s ∈ S (notation: d v S).
A lower bound d is called greatest lower bound (GLB) or infimum
of S if d′ v d for every lower bound d′ of S (notation: d =

d
S).

Examples:

(Live Variables) (D,v) = (2Varc ,⊆),d
{V1, . . . , Vn} =

⋂

{V1, . . . , Vn}
(Available Expressions) (D,v) = (2AExp

c ,⊇),d
{A1, . . . , An} =

⋃

{A1, . . . , An}
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Duality in Complete Lattices

Dual concept of least upper bound: greatest lower bound

Definitions:

An element d ∈ D is called a lower bound of S ⊆ D if d v s for
every s ∈ S (notation: d v S).
A lower bound d is called greatest lower bound (GLB) or infimum
of S if d′ v d for every lower bound d′ of S (notation: d =

d
S).

Examples:

(Live Variables) (D,v) = (2Varc ,⊆),d
{V1, . . . , Vn} =

⋂

{V1, . . . , Vn}
(Available Expressions) (D,v) = (2AExp

c ,⊇),d
{A1, . . . , An} =

⋃

{A1, . . . , An}

Lemma: the following are equivalent:

(D,v) is a complete lattice
(i.e., every subset of D has a least upper bound)
Every subset of D has a greatest lower bound
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Duality in Complete Lattices

Dual concept of least upper bound: greatest lower bound

Definitions:

An element d ∈ D is called a lower bound of S ⊆ D if d v s for
every s ∈ S (notation: d v S).
A lower bound d is called greatest lower bound (GLB) or infimum
of S if d′ v d for every lower bound d′ of S (notation: d =

d
S).

Examples:

(Live Variables) (D,v) = (2Varc ,⊆),d
{V1, . . . , Vn} =

⋂

{V1, . . . , Vn}
(Available Expressions) (D,v) = (2AExp

c ,⊇),d
{A1, . . . , An} =

⋃

{A1, . . . , An}

Lemma: the following are equivalent:

(D,v) is a complete lattice
(i.e., every subset of D has a least upper bound)
Every subset of D has a greatest lower bound

Corollary: every complete lattice has a greatest element > :=
d

∅
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Chains

Chains are generated by the approximation of the analysis information
in the fixpoint iteration.

Definition 20.7 (Chain; repetition of Def. 7.4 and 7.6)

Let (D,v) be a partial order.

1 A subset S ⊆ D is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
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Chains

Chains are generated by the approximation of the analysis information
in the fixpoint iteration.

Definition 20.7 (Chain; repetition of Def. 7.4 and 7.6)

Let (D,v) be a partial order.

1 A subset S ⊆ D is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).

2 (D,v) is called chain complete (CCPO) if each of its chains has a
least upper bound.
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Chains

Chains are generated by the approximation of the analysis information
in the fixpoint iteration.

Definition 20.7 (Chain; repetition of Def. 7.4 and 7.6)

Let (D,v) be a partial order.

1 A subset S ⊆ D is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).

2 (D,v) is called chain complete (CCPO) if each of its chains has a
least upper bound.

Corollary 20.8

Every complete lattice is a CCPO.
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Monotonicity of Functions

The monotonicity of transfer functions (which formalize the impact of
a block in the program on the analysis information) excludes
“oscillating behavior” in fixpoint iteration.

Definition 20.9 (Monotonicity; repetition of Def. 8.1)

Let (D,v) and (D′,v′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ F (d1) v
′ F (d2).
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Monotonicity of Functions

The monotonicity of transfer functions (which formalize the impact of
a block in the program on the analysis information) excludes
“oscillating behavior” in fixpoint iteration.

Definition 20.9 (Monotonicity; repetition of Def. 8.1)

Let (D,v) and (D′,v′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ F (d1) v
′ F (d2).

Example 20.10

1 (Live Variables) (D,v) = (2Varc ,⊆)
Each transfer function ϕl′(V ) := (V \ killLV(Bl′)) ∪ genLV(Bl′) is
obviously monotonic
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Monotonicity of Functions

The monotonicity of transfer functions (which formalize the impact of
a block in the program on the analysis information) excludes
“oscillating behavior” in fixpoint iteration.

Definition 20.9 (Monotonicity; repetition of Def. 8.1)

Let (D,v) and (D′,v′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ F (d1) v
′ F (d2).

Example 20.10

1 (Live Variables) (D,v) = (2Varc ,⊆)
Each transfer function ϕl′(V ) := (V \ killLV(Bl′)) ∪ genLV(Bl′) is
obviously monotonic

2 (Available Expressions) (D,v) = (2AExpc ,⊇)
Each transfer function ϕl′(A) := (A \ killAE(Bl′)) ∪ genAE(Bl′) is
obviously monotonic
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The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain
Condition.

Definition 20.11 (Ascending Chain Condition)

A partial order (D,v) satisfies the Ascending Chain Condition (ACC)
if each ascending chain d1 v d2 v . . . eventually stabilizes, i.e., there
exists n ∈ N such that dn = dn+1 = . . .
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The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain
Condition.

Definition 20.11 (Ascending Chain Condition)

A partial order (D,v) satisfies the Ascending Chain Condition (ACC)
if each ascending chain d1 v d2 v . . . eventually stabilizes, i.e., there
exists n ∈ N such that dn = dn+1 = . . .

Example 20.12

1 (Live Variables) (D,v) = (2Varc ,⊆) satisfies ACC since Var c

(unlike Var) is finite
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The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain
Condition.

Definition 20.11 (Ascending Chain Condition)

A partial order (D,v) satisfies the Ascending Chain Condition (ACC)
if each ascending chain d1 v d2 v . . . eventually stabilizes, i.e., there
exists n ∈ N such that dn = dn+1 = . . .

Example 20.12

1 (Live Variables) (D,v) = (2Varc ,⊆) satisfies ACC since Var c

(unlike Var) is finite

2 (Available Expressions) (D,v) = (2AExpc ,⊇) satisfies ACC since
AExpc (unlike AExp) is finite
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Fixpoints

Theorem 20.13 (Fixpoint Theorem; repetition of Thm. 8.7)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{Fn (
⊔

∅) | n ∈ N}
is the least fixpoint of F .
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Fixpoints

Theorem 20.13 (Fixpoint Theorem; repetition of Thm. 8.7)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{Fn (
⊔

∅) | n ∈ N}
is the least fixpoint of F .

Definition 20.14 (Continuity; repetition of Def. 8.5)

Let (D,v) and (D′,v′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,v) and (D′,v′)) if, for every
non-empty chain S ⊆ D,

F (
⊔

S) =
⊔

F (S).
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Fixpoints

Theorem 20.13 (Fixpoint Theorem; repetition of Thm. 8.7)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{Fn (
⊔

∅) | n ∈ N}
is the least fixpoint of F .

Definition 20.14 (Continuity; repetition of Def. 8.5)

Let (D,v) and (D′,v′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,v) and (D′,v′)) if, for every
non-empty chain S ⊆ D,

F (
⊔

S) =
⊔

F (S).

Corollary 20.15

Monotonic functions on partial orders that satisfy ACC are continuous.
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Fixpoints

Theorem 20.13 (Fixpoint Theorem; repetition of Thm. 8.7)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔

{Fn (
⊔

∅) | n ∈ N}
is the least fixpoint of F .

Definition 20.14 (Continuity; repetition of Def. 8.5)

Let (D,v) and (D′,v′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,v) and (D′,v′)) if, for every
non-empty chain S ⊆ D,

F (
⊔

S) =
⊔

F (S).

Corollary 20.15

Monotonic functions on partial orders that satisfy ACC are continuous.

Proof.

on the board
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Dataflow Systems I

Definition 20.16 (Dataflow system)

A dataflow system S = (L, E, F, (D,v), ι, ϕ) consists of

a finite set of (program) labels L (here: Lc),

a set of extremal labels E ⊆ L (here: {init(c)} or final(c)),

a flow relation F ⊆ L × L (here: flow(c) or flowR(c)),

a complete lattice (D,v) that satisfies ACC
(with LUB operator

⊔

and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ L} of type
ϕl : D → D.
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Dataflow Systems II

Example 20.17

Problem Available Expressions Live Variables

E {init(c)} final(c)

F flow(c) flowR(c)

D 2AExpc 2Varc

v ⊇ ⊆
⊔ ⋂ ⋃

⊥ AExpc ∅
ι ∅ Var c

ϕl ϕl(d) = (d \ kill(Bl)) ∪ gen(Bl)
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