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@ Repetition: Heading for a Dataflow Analysis Framework
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Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
—> Look for underlying framework

@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

o Overall pattern: for c € Cmd and [ € L., the analysis
information (Al) is described by equations of the form

Al = 2 ifle B
P W er (Aly) | (1) € F}  otherwise

where

the set of extremal labels, E, is {init(c)} or final(c)
¢ specifies the extremal analysis information

the combination operator, | |, is [ or

¢ denotes the transfer function of block BY

the flow relation F is flow(c) or flow’ (c)

(={,1) 1] V) e flow(c)})
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Characterization of Analyses

@ Direction of information flow:
o forward:
@ F = flow(c)
@ Al; concerns entry of B!
@ c has isolated entry

@ backward:
o F = flow"(c)
@ Al; concerns exit of B!
@ ¢ has isolated exits

o Quantification over paths:

e may:
o LU=U
@ property satisfied by some path
@ interested in least solution (later)

9 must:
o LI=nN
@ property satisfied by all paths
@ interested in greatest solution (later)
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Goal: solve dataflow equation system by fixpoint iteration
@ Introduce partial order for comparing analysis results
© Establish least upper bound as combination operator
© Ensure monotonicity of transfer functions

@ Guarantee termination of fixpoint iteration (and continuity of
functional) by Ascending Chain Condition

@ Optimize fixpoint iteration by worklist algorithm
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© Order-Theoretic Foundations
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Partial Orders

The domain of analysis information usually forms a partial order where
the ordering relation compares the “precision” of information.

Definition 20.1 (Partial order; repetition of Def. 7.1)

A partial order (PO) (D, C) consists of a set D, called domain, and of
a relation C C D x D such that, for every dy,ds,ds € D,

reflexivity: dy C d
transitivity: di C do and do CE d3 = di C d3
antisymmetry: di E do and do C diy = di = do
It is called total if, in addition, always dy C do or do C dj.

@ (Live Variables) (2V", C) is a (non-total) partial order
© (Available Expressions) (245%P¢, D) is a (non-total) partial order
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Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 20.3 ((Least) upper bound; repetition of Def. 7.4)

Let (D,C) be a partial order and S C D.

@ An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).

© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d £ d’ for every upper bound d’ of S
(notation: d =[]5).

@ (Live Variables) (D,C) = (2V%< C). Given Vi,...,V, C Var,,
LV, .. Vil = UL, ., Vi)

Q (Avail. Expr.) (D,C) = (24%%Pc D). Given A4i,...,4, C AExp,,
| KA1, ..., An} =N{A1, ..., An}
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Complete Lattices

Since {pp (Aly) | (I',1) € F} is not necessarily a chain (Def. 7.4), chain
completeness (Def. 7.6) is not sufficient for guaranteeing the
well-definedness of the equation system. A stronger property is
required:

Definition 20.5 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D
have least upper bounds. In this case,
1L:=1]0

denotes the least element of D.

© (Live Variables)
(D,C) = (2", C) is a complete lattice with L = ()

@ (Available Expressions)
(D,C) = (24 D) is a complete lattice with L = AEzp,
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Duality in Complete Lattices

@ Dual concept of least upper bound: greatest lower bound
@ Definitions:
o An element d € D is called a lower bound of S C D if d C s for
every s € S (notation: d C 5).
¢ A lower bound d is called greatest lower bound (GLB) or infimum
of S if d' C d for every lower bound d’ of S (notation: d =[1]5).
o Examples:

o (Live Variables) (D,C) = (2", C),
MV, Vol =NV Va)

o (Available Expressions) (D,C) = (24F2pc D),
A1, ..., An} = U{41,..., An}

o Lemma: the following are equivalent:

¢ (D,C) is a complete lattice
(i.e., every subset of D has a least upper bound)

o Every subset of D has a greatest lower bound

o Corollary: every complete lattice has a greatest element T : =[]}
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Chains are generated by the approximation of the analysis information
in the fixpoint iteration.

Definition 20.7 (Chain; repetition of Def. 7.4 and 7.6)

Let (D,C) be a partial order.

O A subset S C D is called a chain in D if, for every s1,s9 € S,
s1 E sgor sy C sy
(that is, S is a totally ordered subset of D).

Q (D, L) is called chain complete (CCPO) if each of its chains has a
least upper bound.

FEvery complete lattice is a CCPO.
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Monotonicity of Functions

The monotonicity of transfer functions (which formalize the impact of
a block in the program on the analysis information) excludes
“oscillating behavior” in fixpoint iteration.

Definition 20.9 (Monotonicity; repetition of Def. 8.1)

Let (D,C) and (D’,C') be partial orders, and let F': D — D'. F'is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,ds € D,

di Cdy = F(d1) C' F(d).

Example 20.10
@ (Live Variables) (D,C) = (2Ver, C)
Each transfer function @y (V) := (V \ killoy(B")) U genyy (BY) is
obviously monotonic
O (Available Expressions) (D,C) = (24F%< D)
Each transfer function ¢y (A) := (A4 \ kiIIAE(Bl,)) U genAE(Bl’) is
obviously monotonic

| \
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The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain
Condition.

Definition 20.11 (Ascending Chain Condition)

A partial order (D, C) satisfies the Ascending Chain Condition (ACC)

if each ascending chain d; C ds C ... eventually stabilizes, i.e., there
exists n € N such that d, = d,11 = ...

@ (Live Variables) (D,C) = (2V%", C) satisfies ACC since Var,
(unlike Var) is finite

© (Available Expressions) (D,C) = (2452P¢, D) satisfies ACC since
AFEzp, (unlike AEzp) is finite
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Theorem 20.13 (Fixpoint Theorem; repetition of Thm. 8.7)

Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) := J{F" (U0) | n € N}
1s the least fixpoint of F.

Definition 20.14 (Continuity; repetition of Def. 8.5)

Let (D,C) and (D’,C') be CCPOs and F : D — D’ monotonic. Then
F is called continuous (w.r.t. (D,C) and (D',C")) if, for every
non-empty chain S C D,

F(US) =L F(S).

Corollary 20.15

Monotonic functions on partial orders that satisfy ACC are continuous.

on the board O
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© The Framework
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Dataflow Systems I

Definition 20.16 (Dataflow system)

A dataflow system S = (L, E, F, (D,C),, ) consists of

a finite set of (program) labels L (here: L),

a set of extremal labels E C L (here: {init(c)} or final(c)),
a flow relation F C L x L (here: flow(c) or flow*(c)),

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

o an extremal value ¢ € D (for the extremal labels), and

©

e ¢ ¢

@ a collection of monotonic transfer functions {¢; | I € L} of type
wr:D— D.
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Dataflow Systems 11

Example 20.17

| Problem | Available Expressions | Live Variables |

E {init(c)} final(c)

F flow(c) flow’(c)

D 2AEzpC 2Varc

C 2 C

L N U

L AFEzp, 0

v 0 Var,

Q1 pi(d) = (d\ kill(B")) U gen(B")
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