Semantics and Verification of Software

Lecture 20: Dataflow Analysis III (The Framework)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Repetition: Heading for a Dataflow Analysis Framework

Rm Semantics and Verification of Software Summer Semester 2010

Similarities between Analysis Problems

o Observation: the analyses presented so far have some similarities
—> Look for underlying framework

@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

o Overall pattern: for c € Cmd and [€ L., the analysis
information (Al) is described by equations of the form

Al = 2 ifle B
P W er (Aly) | (1) € F} otherwise

where

the set of extremal labels, E, is {init(c)} or final(c)
¢ specifies the extremal analysis information

the combination operator, | |, is [or

¢ denotes the transfer function of block BY

the flow relation F is flow(c) or flow’ (c)

(={,1) 1] V) e flow(c)})

Rm Semantics and Verification of Software Summer Semester 2010

¢ © ¢ ¢ ¢

Characterization of Analyses

@ Direction of information flow:
o forward:
@ F = flow(c)
@ Al; concerns entry of B!
@ c has isolated entry

@ backward:
o F = flow"(c)
@ Al; concerns exit of B!
@ ¢ has isolated exits

o Quantification over paths:

e may:
o LU=U
@ property satisfied by some path
@ interested in least solution (later)

9 must:
o LI=nN
@ property satisfied by all paths
@ interested in greatest solution (later)

Rm Semantics and Verification of Software Summer Semester 2010

Goal: solve dataflow equation system by fixpoint iteration
@ Introduce partial order for comparing analysis results
© Establish least upper bound as combination operator
© Ensure monotonicity of transfer functions

@ Guarantee termination of fixpoint iteration (and continuity of
functional) by Ascending Chain Condition

@ Optimize fixpoint iteration by worklist algorithm

Rm Semantics and Verification of Software Summer Semester 2010

© Order-Theoretic Foundations

Rm Semantics and Verification of Software Summer Semester 2010

Partial Orders

The domain of analysis information usually forms a partial order where
the ordering relation compares the “precision” of information.

Definition 20.1 (Partial order; repetition of Def. 7.1)

A partial order (PO) (D, C) consists of a set D, called domain, and of
a relation C C D x D such that, for every dy,ds,ds € D,

reflexivity: dy C d
transitivity: di C do and do CE d3 = di C d3
antisymmetry: di E do and do C diy = di = do
It is called total if, in addition, always dy C do or do C dj.

@ (Live Variables) (2V", C) is a (non-total) partial order
© (Available Expressions) (245%P¢, D) is a (non-total) partial order

m' Semantics and Verification of Software Summer Semester 2010

Upper Bounds

In the dataflow equation system, analysis information from several
predecessors is combined by taking the least upper bound.

Definition 20.3 ((Least) upper bound; repetition of Def. 7.4)

Let (D,C) be a partial order and S C D.

@ An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).

© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d £ d’ for every upper bound d’ of S
(notation: d =[]5).

@ (Live Variables) (D,C) = (2V%< C). Given Vi,...,V, C Var,,
LV, .. Vil = UL, ., Vi)

Q (Avail. Expr.) (D,C) = (24%%Pc D). Given A4i,...,4, C AExp,,
| KA1, ..., An} =N{A1, ..., An}

m' Semantics and Verification of Software Summer Semester 2010

Complete Lattices

Since {pp (Aly) | (I',1) € F} is not necessarily a chain (Def. 7.4), chain
completeness (Def. 7.6) is not sufficient for guaranteeing the
well-definedness of the equation system. A stronger property is
required:

Definition 20.5 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D
have least upper bounds. In this case,
1L:=1]0

denotes the least element of D.

© (Live Variables)
(D,C) = (2", C) is a complete lattice with L = ()

@ (Available Expressions)
(D,C) = (24 D) is a complete lattice with L = AEzp,

m' Semantics and Verification of Software Summer Semester 2010

Duality in Complete Lattices

@ Dual concept of least upper bound: greatest lower bound
@ Definitions:
o An element d € D is called a lower bound of S C D if d C s for
every s € S (notation: d C 5).
¢ A lower bound d is called greatest lower bound (GLB) or infimum
of S if d' C d for every lower bound d’ of S (notation: d =[1]5).
o Examples:

o (Live Variables) (D,C) = (2", C),
MV, Vol =NV Va)

o (Available Expressions) (D,C) = (24F2pc D),
A1, ..., An} = U{41,..., An}

o Lemma: the following are equivalent:

¢ (D,C) is a complete lattice
(i.e., every subset of D has a least upper bound)

o Every subset of D has a greatest lower bound

o Corollary: every complete lattice has a greatest element T : =[]}

m' Semantics and Verification of Software Summer Semester 2010 10

Chains are generated by the approximation of the analysis information
in the fixpoint iteration.

Definition 20.7 (Chain; repetition of Def. 7.4 and 7.6)

Let (D,C) be a partial order.

O A subset S C D is called a chain in D if, for every s1,s9 € S,
s1 E sgor sy C sy
(that is, S is a totally ordered subset of D).

Q (D, L) is called chain complete (CCPO) if each of its chains has a
least upper bound.

FEvery complete lattice is a CCPO.

m' Semantics and Verification of Software Summer Semester 2010 11

Monotonicity of Functions

The monotonicity of transfer functions (which formalize the impact of
a block in the program on the analysis information) excludes
“oscillating behavior” in fixpoint iteration.

Definition 20.9 (Monotonicity; repetition of Def. 8.1)

Let (D,C) and (D’,C') be partial orders, and let F': D — D'. F'is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,ds € D,

di Cdy = F(d1) C' F(d).

Example 20.10
@ (Live Variables) (D,C) = (2Ver, C)
Each transfer function @y (V) := (V \ killoy(B")) U genyy (BY) is
obviously monotonic
O (Available Expressions) (D,C) = (24F%< D)
Each transfer function ¢y (A) := (A4 \ kiIIAE(Bl,)) U genAE(Bl’) is
obviously monotonic

| \

m Semantics and Verification of Software Summer Semester 2010 12

The Ascending Chain Condition

Termination of fixpoint iteration is guaranteed by the Ascending Chain
Condition.

Definition 20.11 (Ascending Chain Condition)

A partial order (D, C) satisfies the Ascending Chain Condition (ACC)

if each ascending chain d; C ds C ... eventually stabilizes, i.e., there
exists n € N such that d, = d,11 = ...

@ (Live Variables) (D,C) = (2V%", C) satisfies ACC since Var,
(unlike Var) is finite

© (Available Expressions) (D,C) = (2452P¢, D) satisfies ACC since
AFEzp, (unlike AEzp) is finite

m Semantics and Verification of Software Summer Semester 2010 13

Theorem 20.13 (Fixpoint Theorem; repetition of Thm. 8.7)

Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) := J{F" (U0) | n € N}
1s the least fixpoint of F.

Definition 20.14 (Continuity; repetition of Def. 8.5)

Let (D,C) and (D’,C') be CCPOs and F : D — D’ monotonic. Then
F is called continuous (w.r.t. (D,C) and (D',C")) if, for every
non-empty chain S C D,

F(US) =L F(S).

Corollary 20.15

Monotonic functions on partial orders that satisfy ACC are continuous.

on the board O

m Semantics and Verification of Software Summer Semester 2010 14

© The Framework

Rm mantics and Verification of Software Summer Semester

Dataflow Systems I

Definition 20.16 (Dataflow system)

A dataflow system S = (L, E, F, (D,C),,) consists of

a finite set of (program) labels L (here: L),

a set of extremal labels E C L (here: {init(c)} or final(c)),
a flow relation F C L x L (here: flow(c) or flow*(c)),

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

o an extremal value ¢ € D (for the extremal labels), and

©

e ¢ ¢

@ a collection of monotonic transfer functions {¢; | I € L} of type
wr:D— D.

m' Semantics and Verification of Software Summer Semester 2010 16

Dataflow Systems 11

Example 20.17

| Problem | Available Expressions | Live Variables |

E {init(c)} final(c)

F flow(c) flow’(c)

D 2AEzpC 2Varc

C 2 C

L N U

L AFEzp, 0

v 0 Var,

Q1 pi(d) = (d\ kill(B")) U gen(B")

Semantics and Verification of Software Summer Semester 2010 17

	Repetition: Heading for a Dataflow Analysis Framework
	Order-Theoretic Foundations
	The Framework

