Semantics and Verification of Software

Lecture 21: Dataflow Analysis IV
(Solving Dataflow Equation Systems)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

© Repetition: The Dataflow Analysis Framework

Rm Semantics and Verification of Software Summer Semester 2010



Dataflow Systems I

Definition (Dataflow system)

A dataflow system S = (L, E, F, (D,C),, ) consists of

a finite set of (program) labels L (here: L),

a set of extremal labels E C L (here: {init(c)} or final(c)),
a flow relation F C L x L (here: flow(c) or flow*(c)),

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

o an extremal value ¢ € D (for the extremal labels), and

©

e ¢ ¢

@ a collection of monotonic transfer functions {¢; | I € L} of type
wr:D— D.

m' Semantics and Verification of Software Summer Semester 2010



Dataflow Systems 11

| Problem | Available Expressions | Live Variables |

E {init(c)} final(c)

F flow(c) flow’(c)

D 2AEzpC 2Varc

C 2 C

L N U

L AFEzp, 0

v 0 Var,

Q1 pi(d) = (d\ kill(B")) U gen(B")

Semantics and Verification of Software Summer Semester 2010



© Solving Dataflow Equation Systems

Rm Semantics and Verification of Software Summer Semester 2010



The Equation System

Definition 21.1 (Dataflow equation system)

Let S = (L,E,F,(D,C),t,¢) be a dataflow system. S defines the
following equation system over the set of variables {Al; | [ € L}:

Al = L ifle B
L LI{ew(Aly) | (I',1) € F} otherwise

m' Semantics and Verification of Software Summer Semester 2010



The Functional

Just as in the denotational semantics of while loops, the equation
system determines a functional whose fixpoints are exactly the
solutions of the equation system.

Definition 21.2 (Dataflow functional)

The equation system of a dataflow system S = (L, E, F, (D,C), ¢, )
induces a functional

$g: D" — D" : (dyy,....dy,) — (dy,....,d})
where L = {ly,...,l,} and, for each 1 <i <mn,

ifl;e B

/A X
;= {Ll{gpl/ (dp) | (I',l;) € F}  otherwise

m Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

Rm Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

o (dy,...,d,) is a solution of the equation system iff it is a fixpoint
of &g

Rm Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined
o (dy,...,d,) is a solution of the equation system iff it is a fixpoint
of &g
o If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)

Rm Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

o (dy,...,d,) is a solution of the equation system iff it is a fixpoint
of &g
o If (D,C) is a complete lattice satisfying ACC, then so is (D", C")

(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
Every transfer function ¢; monotonic in D
= &g monotonic in D"

©

Rm Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

(di,...,dy) is a solution of the equation system iff it is a fixpoint
of &g

If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
Every transfer function ¢; monotonic in D

= &g monotonic in D"

©

©

Thus the (least) fixpoint is effectively computable by iteration:
fix(®g) =| [{@%5(Lpn)|ic N}

where Lpn = (Lp,...,Lp)
—_—————

n times

Rm Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

(di,...,dy) is a solution of the equation system iff it is a fixpoint
of &g

If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
Every transfer function ¢; monotonic in D

= &g monotonic in D"

©

©

Thus the (least) fixpoint is effectively computable by iteration:
fix(@s) = |_[{@5(Lpn) | i€ N}

where J_Dn = (J_D, ey J_D)
n times
o If maximal length of chains in D is m
—> maximal length of chains in D" is m - n
= fixpoint iteration requires at most m - n steps

Rm Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program:

c=[x := a+b]!;
[y := a*b)?;
while [y > a+b]? do
[a := a+1]*;
a+b]®

™
1

m' Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y := a*b)?; AE; = AE; U {a+b}
while [y > a+b]® do  AE3 = (AE2 U {a*b}) N (AE; U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]® AE; = AE4\ {a+b,axb,a+1}

m' Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y := a*b)?; AE; = AE; U {a+b}
while [y > a+b]® do  AE3 = (AE2 U {a*b}) N (AE; U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]® AE; = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

il 1 2 3 4 5
0| AEzp, AExp., AExp, AEzp. AEuxp,

m' Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program:
c=[x := a+b]!;
[y := a*b)?;
while [y > a+b]? do
[a := a+1]*;
[x := a+b]®

Fixpoint iteration:

Equation system:

AE; =0

AE; = AE; U {a+b}

AE; = (AEz U {a*b}) N (AE5 U {a+b})
AE4 = AEs U {a+b}

AE; = AE, \ {a+b,a*b,a+1}

) 1 2 3 4 )
0| AExp. AExp, AFzp, AFExp. AExp,
1 0 AEzp, AExp. AEap, 0
m' Semantics and Verification of Software Summer Semester 2010




Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y := a*b)?; AE; = AE; U {a+b}
while [y > a+b]® do  AE3 = (AE2 U {a*b}) N (AE; U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]® AE; = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

i 1 2 3 4 5
0| AExp. AExp, AFEzp, AFExp., AEzp,
1 0 AEzp, AExp. AEap, 0
2 0 {a+b} {a+b} AFzp, 0

m' Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y := a*b)?; AE; = AE; U {a+b}
while [y > a+b]® do  AE3 = (AE2 U {a*b}) N (AE; U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]® AE; = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

1 2 3 4 5
AExp, AExp, AFEzp, AExp., AEzp

0 AEzp, AExp. AEap, 0

0 {a+b} {a+b} AExp, 0

0 {a+b} {a+b} {a+b} 0

[

7
0
1
2
3

m' Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y := a*b)?; AE; = AE; U {a+b}
while [y > a+b]® do  AE3 = (AE2 U {a*b}) N (AE; U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]® AE; = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

1 2 3 4 )
AExp, AExp, AFEzp, AExp., AEzp
AEzp, AExp. AEap, 0
{a+b} {a+b} AEzp, 0
{a+b} {a+b} {a+b} 0
{a+b} {a+b} {a+b} 0

[

=W N R O .
ISESESEST

m' Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program:
== 255 =45
= =12
if [y > 0]* then
[z := x]°
else

m' Semantics and Verification of Software

Summer Semester 2010 10



Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program: Equation system:
[x := 2%y := 4]%; LV1=LV2\{y}
x o= 1°; Vs = V5 \ {x)
if [y > 0]* then LVs = V4 U {y}
[z := x]° LV = ((LV5 \ {z}) U {x}) U ((LVs \ {z}) U {y})
else LV5 = (LV7 \ {x}) U{z}
[Z = y*y]ﬁ; LVg = (LV7 \ {X}) U {Z}
[x := z]” V7 = {x,y,z}

m' Semantics and Verification of Software Summer Semester 2010 10



Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program: Equation system:
[x := 2y := 4)%; LV1i=1LVo\{y}
= =12 LVy = LV3 \ {x}
if [y > 0]* then LVs = V4 U {y}
[z := x]° LV = ((LV5 \ {z}) U {x}) U ((LVs \ {z}) U {y})
else LVs = (LV7 \ {x}) U{z}
A = * ; 6 — 7 X VA
[ y*y]° Ve = (LV7 \ {x}) U {z}
[x := 2" V7 = {x,y,z}
Fixpoint iteration:
ijl1 2 3 4 5 6 7
00 0 9 0 0 0 ]
m' Semantics and Verification of Software Summer Semester 2010 10




Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program: Equation system:
[x := 2%y := 4% LVi=Ls\{y}
[X = 1]3’ LV, = LV3 \ {X}
if [y > 0]* then LVs = V4 U {y}
2 i Vs = ((LV5 \ {2}) U{x}) U (Vs \ {z}) U {y})
else LV5 = (LV7 \ {x}) U{z}
[z := y*y]%; Ve = (LV7 \ {x}) U{z}
[x := 2" V7 = {x,y,z}
Fixpoint iteration:
i1l 2 3 4 5 6 7
0o(p 0 0 0 0 0 0
Lo 0 =y {z {z2} {xyz}

Semantics and Verification of Software

Summer Semester 2010

10




Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program: Equation system:
[x := 2y := 4)%; LV1i=1LVo\{y}
= =12 Ve = V3 \ {x}
if [y > 0]* then LVs = V4 U {y}
[z := x° LV = ((LV5 \ {z}) U {x}) U ((LVs \ {z}) U {y})
else LV5 = (LV7 \ {x}) U{z}
[z := y*y]%; Ve = (LV7 \ {x}) U{z}
[x := z]” V7 = {x,y,z}

Fixpoint iteration:

1|1 2 3 4 5 6 7
0|0 0 0 0 0 0 0
1o 0 {yt Axy} {2zt {z} {xvy.z}
210 {y} {=vy} {xy} vz} {2z} {xyz}

m' Semantics and Verification of Software Summer Semester 2010 10



Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program: Equation system:
[x := 2%y := 4]%; LV1=LV2\{y}
x o= 17, LV, = V3 {x}
if [y > 0]* then LVs = V4 U {y}
[z := x° LV = ((LV5 \ {z}) U {x}) U ((LVs \ {z}) U {y})
else LV5 = (LV7 \ {x}) U{z}
[z := y*y]%; Ve = (LV7 \ {x}) U{z}
[x := z]” V7 = {x,y,z}

Fixpoint iteration:

1 2 3 4 5 6 7
0 0 0 0 0 0 0
00 {yr {xy} {z} {z} {xyz}
0 {y} {xvy} {xy} {v.z} {v.z} {xvz2}
0 {y} {xv} {xy} {v.z} {v.z} {xvyz2}

m' Semantics and Verification of Software Summer Semester 2010 10

7
0
1
2
3




© Uniqueness of Solutions

Rm Semantics and Verification of Software Summer Semester 2010 11



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Rm Semantics and Verification of Software Summer Semester 2010



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5

@ Available Expressions: see Exercise 12.1

Semantics and Verification of Software Summer Semester 2010



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5

@ Available Expressions: see Exercise 12.1

@ Live Variables: consider

while [x>1]! do

[skip]?;
[x := x+1]3;
[y == o

Semantics and Verification of Software Summer Semester 2010 12



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5
@ Available Expressions: see Exercise 12.1

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV, = LV U {x}

[x := x+1]3; LVs = V4 \ {y}

[y := 04 LVy = {x,y}

Semantics and Verification of Software Summer Semester 2010 12



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5
@ Available Expressions: see Exercise 12.1

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LVy = LV U {x}
[x := x+1]3; LVs = V4 \ {y}
[y := o]* LVy = {x,y}
= LV3 = {X}

Semantics and Verification of Software Summer Semester 2010 12



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5
@ Available Expressions: see Exercise 12.1

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LVy = LV U {x}
[x := x+1]3; LV3 = LV4 \ {y}
[y := o]* LVy = {x,y}
= LV3 = {X}
— LV; =LVyU {X}
=LV U {X}

Semantics and Verification of Software Summer Semester 2010 12



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5

@ Available Expressions: see Exercise 12.1

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LVy = LV U {x}
[x := x+1]3; LV3 = LV4 \ {y}
[y := o]* LVy = {x,y}
= LV3 = {X}
— LV; =LVyU {X}
=LV U {X}

— Solutions: LV = LVy = ({x} or {x,y}), LV3 =LV4 =10

Semantics and Verification of Software Summer Semester 2010 12



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5

@ Available Expressions: see Exercise 12.1

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})

[sl«:ip]2 ¢

LV, = LV U {X}

[x := x+1]3; LVs = V4 \ {y}
[y := o]* LVy = {x,y}
— LV3 = {X}

— LV; =LVyU {X}

=LV U {X}

— Solutions: LV = LVy = ({x} or {x,y}), LV3 =LV4 =10

Here: least solution {x} (maximal potential for optimization)

Semantics and Verification of Software Summer Semester 2010

12



@ Efficient Fixpoint Computation

Rm Semantics and Verification of Software Summer Semester 2010 13



A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step

Rm Semantics and fication of Software Summer Semester 2010 14



A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed

Rm Semantics and Verification of Software Summer Semester 2010 14



A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
—> optimization by worklist

Rm Semantics and Verification of Software Summer Semester 2010 14



A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
—> optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),t,¢)

m Semantics and Verification of Software Summer Semester 2010 14



A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
—> optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),t,¢)
Variables: W € (L x L)*, {Al, € D |l € L}

m Semantics and Verification of Software Summer Semester 2010 14



A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
—> optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),t,¢)
Variables: W € (L x L)*, {Al, € D |l € L}
Procedure: W :=¢;for (I,I') € F do W := (I,I") - W; % Initialize W
for l € L do % Initialize Al
if [ € E then Al; := 1 else Al; := 1 p;

m Semantics and Verification of Software Summer Semester 2010 14



A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
—> optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),t,¢)
Variables: W € (L x L)*, {Al; € D |1 ¢ L}
Procedure: W :=¢;for (I,I') € F do W := (I,I") - W; % Initialize W
for l € L do % Initialize Al
if [ € E then Al; := 1 else Al; := 1 p;
while W # ¢ do
(1,I") :== head(W); W := tail(IW);
if ¢;(Al;) Z Aly then % Fizpoint not yet reached
Al = Aly U gy (Al);
for (I',1") € F do W := (I',1") - W;

m Semantics and Verification of Software Summer Semester 2010 14



A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
—> optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),t,¢)
Variables: W € (L x L)*, {Al, € D |l € L}
Procedure: W :=¢;for (I,I') € F do W := (I,I") - W; % Initialize W
for l € L do % Initialize Al
if [ € E then Al; := 1 else Al; := 1 p;
while W # ¢ do
(1,I") :== head(W); W := tail(IW);
if ¢;(Al;) Z Aly then % Fizpoint not yet reached
Al = Aly U gy (Al);
for (I',1") € F do W := (I',1") - W;
Output: {Al; |l € L}

m Semantics and Verification of Software Summer Semester 2010 14




A Worklist Algorithm II

Example 21.7 (Worklist algorithm)

Available Expression analysis for ¢ = [x := a+b]';
[y := axb]?;
while [y > a+b]? do
[a := a+1]4;
[x := a+b]®

(cf. Examples 18.9 and 21.3)

(A) = AU {a+b}
p2(A) = AU {axb}
g03(A) =AU {a+b}
pa(A) = A\ {a+b, a*b,a+1}
¢5(A) = AU {a+b}

Computation protocol: on the board

m' Semantics and Verification of Software Summer Semester 2010 15



A Worklist Algorithm III

Properties of the algorithm:

Theorem 21.8 (Correctness of worklist algorithm)

Given a dataflow system S = (L, E, F,(D,C),¢, ), Algorithm 21.6
always terminates and computes fix(Pg).

m' Semantics and Verification of Software Summer Semester 2010 16



A Worklist Algorithm III

Properties of the algorithm:

Theorem 21.8 (Correctness of worklist algorithm)

Given a dataflow system S = (L, E, F,(D,C),¢, ), Algorithm 21.6
always terminates and computes fix(Pg).

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

m' Semantics and Verification of Software Summer Semester 2010 16



	Repetition: The Dataflow Analysis Framework
	Solving Dataflow Equation Systems
	Uniqueness of Solutions
	Efficient Fixpoint Computation

