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© Repetition: The Dataflow Analysis Framework
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Dataflow Systems I

Definition (Dataflow system)

A dataflow system S = (L, E, F, (D,C),, ) consists of

a finite set of (program) labels L (here: L),

a set of extremal labels E C L (here: {init(c)} or final(c)),
a flow relation F C L x L (here: flow(c) or flow*(c)),

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

o an extremal value ¢ € D (for the extremal labels), and

©

e ¢ ¢

@ a collection of monotonic transfer functions {¢; | I € L} of type
wr:D— D.
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Dataflow Systems 11

| Problem | Available Expressions | Live Variables |

E {init(c)} final(c)

F flow(c) flow’(c)

D 2AEzpC 2Varc

C 2 C

L N U

L AFEzp, 0

v 0 Var,

Q1 pi(d) = (d\ kill(B")) U gen(B")
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© Solving Dataflow Equation Systems
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The Equation System

Definition 21.1 (Dataflow equation system)

Let S = (L,E,F,(D,C),t,¢) be a dataflow system. S defines the
following equation system over the set of variables {Al; | [ € L}:

Al = L ifle B
L LI{ew(Aly) | (I',1) € F} otherwise
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The Functional

Just as in the denotational semantics of while loops, the equation
system determines a functional whose fixpoints are exactly the
solutions of the equation system.

Definition 21.2 (Dataflow functional)

The equation system of a dataflow system S = (L, E, F, (D,C), ¢, )
induces a functional

$g: D" — D" : (dyy,....dy,) — (dy,....,d})
where L = {ly,...,l,} and, for each 1 <i <mn,

ifl;e B

/A X
;= {Ll{gpl/ (dp) | (I',l;) € F}  otherwise
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Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined
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Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

o (dy,...,d,) is a solution of the equation system iff it is a fixpoint
of &g
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Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined
o (dy,...,d,) is a solution of the equation system iff it is a fixpoint
of &g
o If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
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Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

o (dy,...,d,) is a solution of the equation system iff it is a fixpoint
of &g
o If (D,C) is a complete lattice satisfying ACC, then so is (D", C")

(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
Every transfer function ¢; monotonic in D
= &g monotonic in D"

©
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Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

(di,...,dy) is a solution of the equation system iff it is a fixpoint
of &g

If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
Every transfer function ¢; monotonic in D

= &g monotonic in D"

©

©

Thus the (least) fixpoint is effectively computable by iteration:
fix(®g) =| [{@%5(Lpn)|ic N}

where Lpn = (Lp,...,Lp)
—_—————

n times
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Fixpoint Iteration I

Remarks:
@ (D,C) being a complete lattice ensures that ®g is well defined

(di,...,dy) is a solution of the equation system iff it is a fixpoint
of &g

If (D,C) is a complete lattice satisfying ACC, then so is (D", C")
(where (di,...,d,) C" (d},...,d;) iff d; C d} for every 1 <1i < n)
Every transfer function ¢; monotonic in D

= &g monotonic in D"

©

©

Thus the (least) fixpoint is effectively computable by iteration:
fix(@s) = |_[{@5(Lpn) | i€ N}

where J_Dn = (J_D, ey J_D)
n times
o If maximal length of chains in D is m
—> maximal length of chains in D" is m - n
= fixpoint iteration requires at most m - n steps

Rm Semantics and Verification of Software Summer Semester 2010



Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program:

c=[x := a+b]!;
[y := a*b)?;
while [y > a+b]? do
[a := a+1]*;
a+b]®

™
1
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Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y := a*b)?; AE; = AE; U {a+b}
while [y > a+b]® do  AE3 = (AE2 U {a*b}) N (AE; U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]® AE; = AE4\ {a+b,axb,a+1}
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Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y := a*b)?; AE; = AE; U {a+b}
while [y > a+b]® do  AE3 = (AE2 U {a*b}) N (AE; U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]® AE; = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

il 1 2 3 4 5
0| AEzp, AExp., AExp, AEzp. AEuxp,
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Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program:
c=[x := a+b]!;
[y := a*b)?;
while [y > a+b]? do
[a := a+1]*;
[x := a+b]®

Fixpoint iteration:

Equation system:

AE; =0

AE; = AE; U {a+b}

AE; = (AEz U {a*b}) N (AE5 U {a+b})
AE4 = AEs U {a+b}

AE; = AE, \ {a+b,a*b,a+1}

) 1 2 3 4 )
0| AExp. AExp, AFzp, AFExp. AExp,
1 0 AEzp, AExp. AEap, 0
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Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y := a*b)?; AE; = AE; U {a+b}
while [y > a+b]® do  AE3 = (AE2 U {a*b}) N (AE; U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]® AE; = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

i 1 2 3 4 5
0| AExp. AExp, AFEzp, AFExp., AEzp,
1 0 AEzp, AExp. AEap, 0
2 0 {a+b} {a+b} AFzp, 0
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Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y := a*b)?; AE; = AE; U {a+b}
while [y > a+b]® do  AE3 = (AE2 U {a*b}) N (AE; U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]® AE; = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

1 2 3 4 5
AExp, AExp, AFEzp, AExp., AEzp

0 AEzp, AExp. AEap, 0

0 {a+b} {a+b} AExp, 0

0 {a+b} {a+b} {a+b} 0

[

7
0
1
2
3
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Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program: Equation system:
c=[x := a+b]!; AE; =0
[y := a*b)?; AE; = AE; U {a+b}
while [y > a+b]® do  AE3 = (AE2 U {a*b}) N (AE; U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]® AE; = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

1 2 3 4 )
AExp, AExp, AFEzp, AExp., AEzp
AEzp, AExp. AEap, 0
{a+b} {a+b} AEzp, 0
{a+b} {a+b} {a+b} 0
{a+b} {a+b} {a+b} 0

[

=W N R O .
ISESESEST
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Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program:
== 255 =45
= =12
if [y > 0]* then
[z := x]°
else
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Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program: Equation system:
[x := 2%y := 4]%; LV1=LV2\{y}
x o= 1°; Vs = V5 \ {x)
if [y > 0]* then LVs = V4 U {y}
[z := x]° LV = ((LV5 \ {z}) U {x}) U ((LVs \ {z}) U {y})
else LV5 = (LV7 \ {x}) U{z}
[Z = y*y]ﬁ; LVg = (LV7 \ {X}) U {Z}
[x := z]” V7 = {x,y,z}
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Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program: Equation system:
[x := 2y := 4)%; LV1i=1LVo\{y}
= =12 LVy = LV3 \ {x}
if [y > 0]* then LVs = V4 U {y}
[z := x]° LV = ((LV5 \ {z}) U {x}) U ((LVs \ {z}) U {y})
else LVs = (LV7 \ {x}) U{z}
A = * ; 6 — 7 X VA
[ y*y]° Ve = (LV7 \ {x}) U {z}
[x := 2" V7 = {x,y,z}
Fixpoint iteration:
ijl1 2 3 4 5 6 7
00 0 9 0 0 0 ]
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Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program: Equation system:
[x := 2%y := 4% LVi=Ls\{y}
[X = 1]3’ LV, = LV3 \ {X}
if [y > 0]* then LVs = V4 U {y}
2 i Vs = ((LV5 \ {2}) U{x}) U (Vs \ {z}) U {y})
else LV5 = (LV7 \ {x}) U{z}
[z := y*y]%; Ve = (LV7 \ {x}) U{z}
[x := 2" V7 = {x,y,z}
Fixpoint iteration:
i1l 2 3 4 5 6 7
0o(p 0 0 0 0 0 0
Lo 0 =y {z {z2} {xyz}
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Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program: Equation system:
[x := 2y := 4)%; LV1i=1LVo\{y}
= =12 Ve = V3 \ {x}
if [y > 0]* then LVs = V4 U {y}
[z := x° LV = ((LV5 \ {z}) U {x}) U ((LVs \ {z}) U {y})
else LV5 = (LV7 \ {x}) U{z}
[z := y*y]%; Ve = (LV7 \ {x}) U{z}
[x := z]” V7 = {x,y,z}

Fixpoint iteration:

1|1 2 3 4 5 6 7
0|0 0 0 0 0 0 0
1o 0 {yt Axy} {2zt {z} {xvy.z}
210 {y} {=vy} {xy} vz} {2z} {xyz}
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Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program: Equation system:
[x := 2%y := 4]%; LV1=LV2\{y}
x o= 17, LV, = V3 {x}
if [y > 0]* then LVs = V4 U {y}
[z := x° LV = ((LV5 \ {z}) U {x}) U ((LVs \ {z}) U {y})
else LV5 = (LV7 \ {x}) U{z}
[z := y*y]%; Ve = (LV7 \ {x}) U{z}
[x := z]” V7 = {x,y,z}

Fixpoint iteration:

1 2 3 4 5 6 7
0 0 0 0 0 0 0
00 {yr {xy} {z} {z} {xyz}
0 {y} {xvy} {xy} {v.z} {v.z} {xvz2}
0 {y} {xv} {xy} {v.z} {v.z} {xvyz2}
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© Uniqueness of Solutions
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5

@ Available Expressions: see Exercise 12.1
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5

@ Available Expressions: see Exercise 12.1

@ Live Variables: consider

while [x>1]! do

[skip]?;
[x := x+1]3;
[y == o
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5
@ Available Expressions: see Exercise 12.1

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LV, = LV U {x}

[x := x+1]3; LVs = V4 \ {y}

[y := 04 LVy = {x,y}
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5
@ Available Expressions: see Exercise 12.1

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LVy = LV U {x}
[x := x+1]3; LVs = V4 \ {y}
[y := o]* LVy = {x,y}
= LV3 = {X}
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5
@ Available Expressions: see Exercise 12.1

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LVy = LV U {x}
[x := x+1]3; LV3 = LV4 \ {y}
[y := o]* LVy = {x,y}
= LV3 = {X}
— LV; =LVyU {X}
=LV U {X}
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5

@ Available Expressions: see Exercise 12.1

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})
[skip]?; LVy = LV U {x}
[x := x+1]3; LV3 = LV4 \ {y}
[y := o]* LVy = {x,y}
= LV3 = {X}
— LV; =LVyU {X}
=LV U {X}

— Solutions: LV = LVy = ({x} or {x,y}), LV3 =LV4 =10
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5

@ Available Expressions: see Exercise 12.1

@ Live Variables: consider

while [x>1]! do = LV; = Vo U (LV3 U {x})

[sl«:ip]2 ¢

LV, = LV U {X}

[x := x+1]3; LVs = V4 \ {y}
[y := o]* LVy = {x,y}
— LV3 = {X}

— LV; =LVyU {X}

=LV U {X}

— Solutions: LV = LVy = ({x} or {x,y}), LV3 =LV4 =10

Here: least solution {x} (maximal potential for optimization)

Semantics and Verification of Software Summer Semester 2010
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@ Efficient Fixpoint Computation
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A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
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A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
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A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
—> optimization by worklist
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A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
—> optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),t,¢)
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A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
—> optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),t,¢)
Variables: W € (L x L)*, {Al, € D |l € L}
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A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
—> optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),t,¢)
Variables: W € (L x L)*, {Al, € D |l € L}
Procedure: W :=¢;for (I,I') € F do W := (I,I") - W; % Initialize W
for l € L do % Initialize Al
if [ € E then Al; := 1 else Al; := 1 p;
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A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
—> optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),t,¢)
Variables: W € (L x L)*, {Al; € D |1 ¢ L}
Procedure: W :=¢;for (I,I') € F do W := (I,I") - W; % Initialize W
for l € L do % Initialize Al
if [ € E then Al; := 1 else Al; := 1 p;
while W # ¢ do
(1,I") :== head(W); W := tail(IW);
if ¢;(Al;) Z Aly then % Fizpoint not yet reached
Al = Aly U gy (Al);
for (I',1") € F do W := (I',1") - W;
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A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al; in every step
= redundant if Aly at no F-predecessor I’ changed
—> optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system S = (L, E, F,(D,C),t,¢)
Variables: W € (L x L)*, {Al, € D |l € L}
Procedure: W :=¢;for (I,I') € F do W := (I,I") - W; % Initialize W
for l € L do % Initialize Al
if [ € E then Al; := 1 else Al; := 1 p;
while W # ¢ do
(1,I") :== head(W); W := tail(IW);
if ¢;(Al;) Z Aly then % Fizpoint not yet reached
Al = Aly U gy (Al);
for (I',1") € F do W := (I',1") - W;
Output: {Al; |l € L}
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A Worklist Algorithm II

Example 21.7 (Worklist algorithm)

Available Expression analysis for ¢ = [x := a+b]';
[y := axb]?;
while [y > a+b]? do
[a := a+1]4;
[x := a+b]®

(cf. Examples 18.9 and 21.3)

(A) = AU {a+b}
p2(A) = AU {axb}
g03(A) =AU {a+b}
pa(A) = A\ {a+b, a*b,a+1}
¢5(A) = AU {a+b}

Computation protocol: on the board
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A Worklist Algorithm III

Properties of the algorithm:

Theorem 21.8 (Correctness of worklist algorithm)

Given a dataflow system S = (L, E, F,(D,C),¢, ), Algorithm 21.6
always terminates and computes fix(Pg).
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A Worklist Algorithm III

Properties of the algorithm:

Theorem 21.8 (Correctness of worklist algorithm)

Given a dataflow system S = (L, E, F,(D,C),¢, ), Algorithm 21.6
always terminates and computes fix(Pg).

see [Nielson/Nielson/Hankin 2005, p. 75 ff]
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