
Semantics and Verification of Software

Lecture 21: Dataflow Analysis IV
(Solving Dataflow Equation Systems)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/


Outline

1 Repetition: The Dataflow Analysis Framework

2 Solving Dataflow Equation Systems

3 Uniqueness of Solutions

4 Efficient Fixpoint Computation

Semantics and Verification of Software Summer Semester 2010 2



Dataflow Systems I

Definition (Dataflow system)

A dataflow system S = (L, E, F, (D,v), ι, ϕ) consists of

a finite set of (program) labels L (here: Lc),

a set of extremal labels E ⊆ L (here: {init(c)} or final(c)),

a flow relation F ⊆ L × L (here: flow(c) or flowR(c)),

a complete lattice (D,v) that satisfies ACC
(with LUB operator

⊔
and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ L} of type
ϕl : D → D.

Semantics and Verification of Software Summer Semester 2010 3



Dataflow Systems II

Example

Problem Available Expressions Live Variables

E {init(c)} final(c)

F flow(c) flowR(c)

D 2AExp
c 2Varc

v ⊇ ⊆
⊔ ⋂ ⋃

⊥ AExpc ∅
ι ∅ Var c

ϕl ϕl(d) = (d \ kill(Bl)) ∪ gen(Bl)

Semantics and Verification of Software Summer Semester 2010 4



Outline

1 Repetition: The Dataflow Analysis Framework

2 Solving Dataflow Equation Systems

3 Uniqueness of Solutions

4 Efficient Fixpoint Computation

Semantics and Verification of Software Summer Semester 2010 5



The Equation System

Definition 21.1 (Dataflow equation system)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. S defines the
following equation system over the set of variables {AIl | l ∈ L}:

AIl =

{
ι if l ∈ E
⊔
{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

Semantics and Verification of Software Summer Semester 2010 6



The Functional

Just as in the denotational semantics of while loops, the equation
system determines a functional whose fixpoints are exactly the
solutions of the equation system.

Definition 21.2 (Dataflow functional)

The equation system of a dataflow system S = (L, E, F, (D,v), ι, ϕ)
induces a functional

ΦS : Dn → Dn : (dl1 , . . . , dln) 7→ (d′l1 , . . . , d
′

ln
)

where L = {l1, . . . , ln} and, for each 1 ≤ i ≤ n,

d′li :=

{
ι if li ∈ E
⊔
{ϕl′(dl′) | (l′, li) ∈ F} otherwise

Semantics and Verification of Software Summer Semester 2010 7



Fixpoint Iteration I

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

(d1, . . . , dn) is a solution of the equation system iff it is a fixpoint
of ΦS

If (D,v) is a complete lattice satisfying ACC, then so is (Dn,vn)
(where (d1, . . . , dn) vn (d′1, . . . , d

′

n) iff di v d′
i
for every 1 ≤ i ≤ n)

Every transfer function ϕl monotonic in D

=⇒ ΦS monotonic in Dn

Thus the (least) fixpoint is effectively computable by iteration:

fix(ΦS) =
⊔

{Φi
S(⊥Dn) | i ∈ N}

where ⊥Dn = (⊥D, . . . ,⊥D
︸ ︷︷ ︸

n times

)

If maximal length of chains in D is m

=⇒ maximal length of chains in Dn is m · n
=⇒ fixpoint iteration requires at most m · n steps

Semantics and Verification of Software Summer Semester 2010 8



Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc

1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅

Semantics and Verification of Software Summer Semester 2010 9



Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}

Semantics and Verification of Software Summer Semester 2010 10



Outline

1 Repetition: The Dataflow Analysis Framework

2 Solving Dataflow Equation Systems

3 Uniqueness of Solutions

4 Efficient Fixpoint Computation

Semantics and Verification of Software Summer Semester 2010 11



Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5

1 Available Expressions: see Exercise 12.1

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = {x, y}

=⇒ LV3 = {x}

=⇒ LV1 = LV2 ∪ {x}
= LV1 ∪ {x}

=⇒ Solutions: LV1 = LV2 = ({x} or {x, y}), LV3 = LV4 = ∅

Here: least solution {x} (maximal potential for optimization)

Semantics and Verification of Software Summer Semester 2010 12



Outline

1 Repetition: The Dataflow Analysis Framework

2 Solving Dataflow Equation Systems

3 Uniqueness of Solutions

4 Efficient Fixpoint Computation

Semantics and Verification of Software Summer Semester 2010 13



A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AIl in every step
=⇒ redundant if AIl′ at no F -predecessor l′ changed
=⇒ optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system S = (L, E, F, (D,v), ι, ϕ)

Variables: W ∈ (L × L)∗, {AIl ∈ D | l ∈ L}

Procedure: W := ε; for (l, l′) ∈ F do W := (l, l′) · W ; % Initialize W

for l ∈ L do % Initialize AI

if l ∈ E then AIl := ι else AIl := ⊥D;
while W 6= ε do

(l, l′) := head(W );W := tail(W );
if ϕl(AIl) 6v AIl′ then % Fixpoint not yet reached

AIl′ := AIl′ t ϕl(AIl);
for (l′, l′′) ∈ F do W := (l′, l′′) · W ;

Output: {AIl | l ∈ L}
Semantics and Verification of Software Summer Semester 2010 14



A Worklist Algorithm II

Example 21.7 (Worklist algorithm)

Available Expression analysis for c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

(cf. Examples 18.9 and 21.3)

Transfer functions: ϕ1(A) = A ∪ {a+b}
ϕ2(A) = A ∪ {a*b}
ϕ3(A) = A ∪ {a+b}
ϕ4(A) = A \ {a+b, a*b, a+1}
ϕ5(A) = A ∪ {a+b}

Computation protocol: on the board

Semantics and Verification of Software Summer Semester 2010 15



A Worklist Algorithm III

Properties of the algorithm:

Theorem 21.8 (Correctness of worklist algorithm)

Given a dataflow system S = (L, E, F, (D,v), ι, ϕ), Algorithm 21.6

always terminates and computes fix(ΦS).

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

Semantics and Verification of Software Summer Semester 2010 16


	Repetition: The Dataflow Analysis Framework
	Solving Dataflow Equation Systems
	Uniqueness of Solutions
	Efficient Fixpoint Computation

