

Semantics and Verification of Software

Lecture 21: Dataflow Analysis IV (Solving Dataflow Equation Systems)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw10/>

Summer Semester 2010

- 1 Repetition: The Dataflow Analysis Framework
- 2 Solving Dataflow Equation Systems
- 3 Uniqueness of Solutions
- 4 Efficient Fixpoint Computation

Definition (Dataflow system)

A **dataflow system** $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ consists of

- a finite set of (program) **labels** L (here: L_c),
- a set of **extremal labels** $E \subseteq L$ (here: $\{\text{init}(c)\}$ or $\text{final}(c)$),
- a **flow relation** $F \subseteq L \times L$ (here: $\text{flow}(c)$ or $\text{flow}^R(c)$),
- a **complete lattice** (D, \sqsubseteq) that satisfies ACC
(with LUB operator \sqcup and least element \perp),
- an **extremal value** $\iota \in D$ (for the extremal labels), and
- a collection of **monotonic transfer functions** $\{\varphi_l \mid l \in L\}$ of type $\varphi_l : D \rightarrow D$.

Example

Problem	Available Expressions	Live Variables
E	$\{\text{init}(c)\}$	$\text{final}(c)$
F	$\text{flow}(c)$	$\text{flow}^R(c)$
D	2^{AExp_c}	2^{Var_c}
\sqsubseteq	\supseteq	\subseteq
\sqcup	\bigcap	\bigcup
\perp	$AExp_c$	\emptyset
ι	\emptyset	Var_c
φ_l	$\varphi_l(d) = (d \setminus \text{kill}(B^l)) \cup \text{gen}(B^l)$	

- 1 Repetition: The Dataflow Analysis Framework
- 2 Solving Dataflow Equation Systems
- 3 Uniqueness of Solutions
- 4 Efficient Fixpoint Computation

Definition 21.1 (Dataflow equation system)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. S defines the following **equation system** over the set of variables $\{\text{Al}_l \mid l \in L\}$:

$$\text{Al}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(\text{Al}_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

Just as in the denotational semantics of `while` loops, the equation system determines a functional whose **fixpoints** are exactly the **solutions** of the equation system.

Definition 21.2 (Dataflow functional)

The equation system of a dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ induces a **functional**

$$\Phi_S : D^n \rightarrow D^n : (d_{l_1}, \dots, d_{l_n}) \mapsto (d'_{l_1}, \dots, d'_{l_n})$$

where $L = \{l_1, \dots, l_n\}$ and, for each $1 \leq i \leq n$,

$$d'_{l_i} := \begin{cases} \iota & \text{if } l_i \in E \\ \bigsqcup \{\varphi_{l'}(d_{l'}) \mid (l', l_i) \in F\} & \text{otherwise} \end{cases}$$

Remarks:

- (D, \sqsubseteq) being a **complete lattice** ensures that Φ_S is well defined
- (d_1, \dots, d_n) is a **solution** of the equation system iff it is a **fixpoint** of Φ_S
- If (D, \sqsubseteq) is a **complete lattice satisfying ACC**, then so is (D^n, \sqsubseteq^n) (where $(d_1, \dots, d_n) \sqsubseteq^n (d'_1, \dots, d'_n)$ iff $d_i \sqsubseteq d'_i$ for every $1 \leq i \leq n$)
- Every transfer function φ_l **monotonic** in D
 $\implies \Phi_S$ **monotonic** in D^n
- Thus the **(least) fixpoint** is **effectively computable** by iteration:

$$\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^i(\perp_{D^n}) \mid i \in \mathbb{N}\}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

- If maximal length of chains in D is m
 \implies maximal length of chains in D^n is $m \cdot n$
 \implies fixpoint iteration requires at most $m \cdot n$ steps

Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program:

```
c = [x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset
4	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program:

```
[x := 2]1; [y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	$\{x, y, z\}$
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\{x, y, z\}$
3	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\{x, y, z\}$

- 1 Repetition: The Dataflow Analysis Framework
- 2 Solving Dataflow Equation Systems
- 3 Uniqueness of Solutions
- 4 Efficient Fixpoint Computation

Uniqueness of Solutions

Just as in the denotational semantics of `while` loops, solutions of dataflow equation systems are **not unique**.

Example 21.5

- ➊ Available Expressions: see Exercise 12.1
- ➋ Live Variables: consider

$$\begin{array}{ll} \text{while } [x > 1]^1 \text{ do} & \implies LV_1 = LV_2 \cup (LV_3 \cup \{x\}) \\ \quad [\text{skip}]^2; & LV_2 = LV_1 \cup \{x\} \\ \quad [x := x+1]^3; & LV_3 = LV_4 \setminus \{y\} \\ \quad [y := 0]^4 & LV_4 = \{x, y\} \\ & \implies LV_3 = \{x\} \\ & \implies LV_1 = LV_2 \cup \{x\} \\ & \quad = LV_1 \cup \{x\} \end{array}$$

\implies **Solutions**: $LV_1 = LV_2 = (\{x\} \text{ or } \{x, y\})$, $LV_3 = LV_4 = \emptyset$

Here: **least** solution $\{x\}$ (maximal potential for optimization)

- 1 Repetition: The Dataflow Analysis Framework
- 2 Solving Dataflow Equation Systems
- 3 Uniqueness of Solutions
- 4 Efficient Fixpoint Computation

A Worklist Algorithm I

Observation: fixpoint iteration re-computes every Al_l in every step
⇒ redundant if $\text{Al}_{l'}$ at no F -predecessor l' changed
⇒ optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$

Variables: $W \in (L \times L)^*$, $\{\text{Al}_l \in D \mid l \in L\}$

Procedure: $W := \varepsilon$; **for** $(l, l') \in F$ **do** $W := (l, l') \cdot W$; % Initialize W
for $l \in L$ **do** % Initialize Al_l
 if $l \in E$ **then** $\text{Al}_l := \iota$ **else** $\text{Al}_l := \perp_D$;
while $W \neq \varepsilon$ **do**
 $(l, l') := \text{head}(W)$; $W := \text{tail}(W)$;
 if $\varphi_l(\text{Al}_l) \not\subseteq \text{Al}_{l'}$ **then** % Fixpoint not yet reached
 $\text{Al}_{l'} := \text{Al}_{l'} \sqcup \varphi_l(\text{Al}_l)$;
 for $(l', l'') \in F$ **do** $W := (l', l'') \cdot W$;

Output: $\{\text{Al}_l \mid l \in L\}$

A Worklist Algorithm II

Example 21.7 (Worklist algorithm)

Available Expression analysis for $c = [x := a+b]^1;$
 $[y := a*b]^2;$
 $\text{while } [y > a+b]^3 \text{ do}$
 $[a := a+1]^4;$
 $[x := a+b]^5$

(cf. Examples 18.9 and 21.3)

Transfer functions:

- $\varphi_1(A) = A \cup \{a+b\}$
- $\varphi_2(A) = A \cup \{a*b\}$
- $\varphi_3(A) = A \cup \{a+b\}$
- $\varphi_4(A) = A \setminus \{a+b, a*b, a+1\}$
- $\varphi_5(A) = A \cup \{a+b\}$

Computation protocol: on the board

Properties of the algorithm:

Theorem 21.8 (Correctness of worklist algorithm)

Given a dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$, Algorithm 21.6 always terminates and computes $\text{fix}(\Phi_S)$.

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]

