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Dataflow Systems I

Definition (Dataflow system)

A dataflow system S = (L, E, F, (D,v), ι, ϕ) consists of

a finite set of (program) labels L (here: Lc),

a set of extremal labels E ⊆ L (here: {init(c)} or final(c)),

a flow relation F ⊆ L × L (here: flow(c) or flowR(c)),

a complete lattice (D,v) that satisfies ACC
(with LUB operator

⊔
and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ L} of type
ϕl : D → D.
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Dataflow Systems II

Example

Problem Available Expressions Live Variables

E {init(c)} final(c)

F flow(c) flowR(c)

D 2AExp
c 2Varc

v ⊇ ⊆
⊔ ⋂ ⋃

⊥ AExpc ∅
ι ∅ Var c

ϕl ϕl(d) = (d \ kill(Bl)) ∪ gen(Bl)
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The Equation System

Definition 21.1 (Dataflow equation system)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. S defines the
following equation system over the set of variables {AIl | l ∈ L}:

AIl =

{
ι if l ∈ E
⊔
{ϕl′(AIl′) | (l′, l) ∈ F} otherwise
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The Functional

Just as in the denotational semantics of while loops, the equation
system determines a functional whose fixpoints are exactly the
solutions of the equation system.

Definition 21.2 (Dataflow functional)

The equation system of a dataflow system S = (L, E, F, (D,v), ι, ϕ)
induces a functional

ΦS : Dn → Dn : (dl1 , . . . , dln) 7→ (d′l1 , . . . , d
′

ln
)

where L = {l1, . . . , ln} and, for each 1 ≤ i ≤ n,

d′li :=

{
ι if li ∈ E
⊔
{ϕl′(dl′) | (l′, li) ∈ F} otherwise
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Fixpoint Iteration I

Remarks:

(D,v) being a complete lattice ensures that ΦS is well defined

(d1, . . . , dn) is a solution of the equation system iff it is a fixpoint
of ΦS

If (D,v) is a complete lattice satisfying ACC, then so is (Dn,vn)
(where (d1, . . . , dn) vn (d′1, . . . , d

′

n) iff di v d′
i
for every 1 ≤ i ≤ n)

Every transfer function ϕl monotonic in D

=⇒ ΦS monotonic in Dn

Thus the (least) fixpoint is effectively computable by iteration:

fix(ΦS) =
⊔

{Φi
S(⊥Dn) | i ∈ N}

where ⊥Dn = (⊥D, . . . ,⊥D
︸ ︷︷ ︸

n times

)

If maximal length of chains in D is m

=⇒ maximal length of chains in Dn is m · n
=⇒ fixpoint iteration requires at most m · n steps
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Fixpoint Iteration II

Example 21.3 (Available Expressions; cf. Example 18.9)

Program:

c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE1 = ∅
AE2 = AE1 ∪ {a+b}
AE3 = (AE2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE4 = AE3 ∪ {a+b}
AE5 = AE4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc

1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅
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Fixpoint Iteration III

Example 21.4 (Live Variables; cf. Example 19.3)

Program:

[x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV1 = LV2 \ {y}
LV2 = LV3 \ {x}
LV3 = LV4 ∪ {y}
LV4 = ((LV5 \ {z}) ∪ {x}) ∪ ((LV6 \ {z}) ∪ {y})
LV5 = (LV7 \ {x}) ∪ {z}
LV6 = (LV7 \ {x}) ∪ {z}
LV7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
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Uniqueness of Solutions

Just as in the denotational semantics of while loops, solutions of
dataflow equation systems are not unique.

Example 21.5

1 Available Expressions: see Exercise 12.1

2 Live Variables: consider

while [x>1]1 do

[skip]2;
[x := x+1]3;
[y := 0]4

=⇒ LV1 = LV2 ∪ (LV3 ∪ {x})
LV2 = LV1 ∪ {x}
LV3 = LV4 \ {y}
LV4 = {x, y}

=⇒ LV3 = {x}

=⇒ LV1 = LV2 ∪ {x}
= LV1 ∪ {x}

=⇒ Solutions: LV1 = LV2 = ({x} or {x, y}), LV3 = LV4 = ∅

Here: least solution {x} (maximal potential for optimization)
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A Worklist Algorithm I

Observation: fixpoint iteration re-computes every AIl in every step
=⇒ redundant if AIl′ at no F -predecessor l′ changed
=⇒ optimization by worklist

Algorithm 21.6 (Worklist algorithm)

Input: dataflow system S = (L, E, F, (D,v), ι, ϕ)

Variables: W ∈ (L × L)∗, {AIl ∈ D | l ∈ L}

Procedure: W := ε; for (l, l′) ∈ F do W := (l, l′) · W ; % Initialize W

for l ∈ L do % Initialize AI

if l ∈ E then AIl := ι else AIl := ⊥D;
while W 6= ε do

(l, l′) := head(W );W := tail(W );
if ϕl(AIl) 6v AIl′ then % Fixpoint not yet reached

AIl′ := AIl′ t ϕl(AIl);
for (l′, l′′) ∈ F do W := (l′, l′′) · W ;

Output: {AIl | l ∈ L}
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A Worklist Algorithm II

Example 21.7 (Worklist algorithm)

Available Expression analysis for c = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

(cf. Examples 18.9 and 21.3)

Transfer functions: ϕ1(A) = A ∪ {a+b}
ϕ2(A) = A ∪ {a*b}
ϕ3(A) = A ∪ {a+b}
ϕ4(A) = A \ {a+b, a*b, a+1}
ϕ5(A) = A ∪ {a+b}

Computation protocol: on the board
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A Worklist Algorithm III

Properties of the algorithm:

Theorem 21.8 (Correctness of worklist algorithm)

Given a dataflow system S = (L, E, F, (D,v), ι, ϕ), Algorithm 21.6

always terminates and computes fix(ΦS).

Proof.

see [Nielson/Nielson/Hankin 2005, p. 75 ff]
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