
Semantics and Verification of Software

Lecture 22: Dataflow Analysis V
(The MOP Solution)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Outline

1 Repetition: The Dataflow Analysis Framework

2 The MOP Solution

3 Another Analysis: Constant Propagation

4 Undecidability of the MOP Solution

Semantics and Verification of Software Summer Semester 2010 2

Dataflow Systems

Definition (Dataflow system)

A dataflow system S = (L, E, F, (D,v), ι, ϕ) consists of

a finite set of (program) labels L (here: Lc),

a set of extremal labels E ⊆ L (here: {init(c)} or final(c)),

a flow relation F ⊆ L × L (here: flow(c) or flowR(c)),

a complete lattice (D,v) that satisfies ACC
(with LUB operator

⊔
and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ L} of type
ϕl : D → D.

Semantics and Verification of Software Summer Semester 2010 3

The Equation System

Definition (Dataflow equation system)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. S defines the
following equation system over the set of variables {AIl | l ∈ L}:

AIl =

{
ι if l ∈ E
⊔
{ϕl′(AIl′) | (l′, l) ∈ F} otherwise

Semantics and Verification of Software Summer Semester 2010 4

The Functional and Its Fixpoint

Definition (Dataflow functional)

The equation system of a dataflow system S = (L, E, F, (D,v), ι, ϕ)
induces a functional

ΦS : Dn → Dn : (dl1 , . . . , dln) 7→ (d′l1 , . . . , d
′

ln
)

where L = {l1, . . . , ln} and, for each 1 ≤ i ≤ n,

d′li :=

{
ι if li ∈ E
⊔
{ϕl′(dl′) | (l′, li) ∈ F} otherwise

Corollary

The least fixpoint of ΦS is effectively computable by iteration:

fix(ΦS) =
⊔
{Φi

S(⊥Dn) | i ∈ N}
where ⊥Dn = (⊥D, . . . ,⊥D

︸ ︷︷ ︸

n times

)

Semantics and Verification of Software Summer Semester 2010 5

Outline

1 Repetition: The Dataflow Analysis Framework

2 The MOP Solution

3 Another Analysis: Constant Propagation

4 Undecidability of the MOP Solution

Semantics and Verification of Software Summer Semester 2010 6

The MOP Solution I

Other solution method for dataflow systems

Semantics and Verification of Software Summer Semester 2010 7

The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Semantics and Verification of Software Summer Semester 2010 7

The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl = least upper bound over all
paths leading to l

Semantics and Verification of Software Summer Semester 2010 7

The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl = least upper bound over all
paths leading to l

Definition 22.1 (Paths)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. For every l ∈ L,
the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,

(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

Semantics and Verification of Software Summer Semester 2010 7

The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl = least upper bound over all
paths leading to l

Definition 22.1 (Paths)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. For every l ∈ L,
the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,

(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Summer Semester 2010 7

The MOP Solution II

Definition 22.2 (MOP solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.

Semantics and Verification of Software Summer Semester 2010 8

The MOP Solution II

Definition 22.2 (MOP solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

Semantics and Verification of Software Summer Semester 2010 8

The MOP Solution II

Definition 22.2 (MOP solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Semantics and Verification of Software Summer Semester 2010 8

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Semantics and Verification of Software Summer Semester 2010 9

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

Semantics and Verification of Software Summer Semester 2010 9

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)

Semantics and Verification of Software Summer Semester 2010 9

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))

Semantics and Verification of Software Summer Semester 2010 9

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))
= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t

ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))

Semantics and Verification of Software Summer Semester 2010 9

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))
= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t

ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))
= ϕ2(ϕ3(ϕ4({x, y}))) t

ϕ2(ϕ3(ϕ4({y})))

Semantics and Verification of Software Summer Semester 2010 9

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))
= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t

ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))
= ϕ2(ϕ3(ϕ4({x, y}))) t

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))

Semantics and Verification of Software Summer Semester 2010 9

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))
= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t

ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))
= ϕ2(ϕ3(ϕ4({x, y}))) t

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})

Semantics and Verification of Software Summer Semester 2010 9

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))
= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t

ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))
= ϕ2(ϕ3(ϕ4({x, y}))) t

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅

Semantics and Verification of Software Summer Semester 2010 9

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))
= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t

ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))
= ϕ2(ϕ3(ϕ4({x, y}))) t

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅
= ∅

Semantics and Verification of Software Summer Semester 2010 9

Outline

1 Repetition: The Dataflow Analysis Framework

2 The MOP Solution

3 Another Analysis: Constant Propagation

4 Undecidability of the MOP Solution

Semantics and Verification of Software Summer Semester 2010 10

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Semantics and Verification of Software Summer Semester 2010 11

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Semantics and Verification of Software Summer Semester 2010 11

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

Semantics and Verification of Software Summer Semester 2010 11

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

Semantics and Verification of Software Summer Semester 2010 11

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

Semantics and Verification of Software Summer Semester 2010 11

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

possible optimizations:
[w := x+1]5 [x := 3]7

Semantics and Verification of Software Summer Semester 2010 11

Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,v), ι, ϕ) is given by

set of labels L := Lc,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,v) where

D := {δ | δ : Var c → Z ∪ {⊥,>}}
δ(x) = z ∈ Z: x has constant value z

δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., different possible values)

v⊆ D × D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)

Semantics and Verification of Software Summer Semester 2010 12

Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,v), ι, ϕ) is given by

set of labels L := Lc,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,v) where

D := {δ | δ : Var c → Z ∪ {⊥,>}}
δ(x) = z ∈ Z: x has constant value z

δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., different possible values)

v⊆ D × D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)

Example 22.5

Var c = {w, x, y, z},
δ1 = (⊥

︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, >
︸︷︷︸

z

), δ2 = (3
︸︷︷︸

w

, 1
︸︷︷︸

x

, 4
︸︷︷︸

y

, >
︸︷︷︸

z

)

=⇒ δ1 t δ2 = (3
︸︷︷︸

w

, 1
︸︷︷︸

x

, >
︸︷︷︸

y

, >
︸︷︷︸

z

)

Semantics and Verification of Software Summer Semester 2010 12

Formalizing Constant Propagation Analysis II

Dataflow system S = (L, E, F, (D,v), ι, ϕ) (continued):

extremal value ι := δ> ∈ D where δ>(x) := > for every x ∈ Var c,

transfer functions {ϕl | l ∈ L} defined by

ϕl(δ) :=

{
δ if Bl = skip or Bl ∈ BExp

δ[x 7→ AJaKδ] if Bl = (x := a)

where

AJxKδ := δ(x)
AJzKδ := z

AJa1 op a2Kδ :=







z1 op z2 if z1, z2 ∈ Z

⊥ if z1 = ⊥ or z2 = ⊥
> otherwise

for z1 := AJa1Kδ and z2 := AJa2Kδ

Semantics and Verification of Software Summer Semester 2010 13

Formalizing Constant Propagation Analysis III

Example 22.6

If δ = (⊥
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, >
︸︷︷︸

z

), then

ϕl(δ) =







(0
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, >
︸︷︷︸

z

) if Bl = (w := 0)

(3
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, >
︸︷︷︸

z

) if Bl = (w := y+1)

(⊥
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, >
︸︷︷︸

z

) if Bl = (w := w+x)

(>
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, >
︸︷︷︸

z

) if Bl = (w := z+2)

Semantics and Verification of Software Summer Semester 2010 14

Formalizing Constant Propagation Analysis IV

Example 22.7

Constant Propagation Analysis for

c := [x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

ϕ1((a, b, c, d)) = (a, 1, c, d)
ϕ2((a, b, c, d)) = (a, b, 1, d)
ϕ3((a, b, c, d)) = (a, b, c, 1)
ϕ4((a, b, c, d)) = (a, b, c, d)
ϕ5((a, b, c, d)) = (b + c, b, c, d)
ϕ6((a, b, c, d)) = (a, b, c, d)
ϕ7((a, b, c, d)) = (a, c + 2, c, d)

1 Fixpoint solution (on the board)

2 MOP solution (on the board)

Semantics and Verification of Software Summer Semester 2010 15

Outline

1 Repetition: The Dataflow Analysis Framework

2 The MOP Solution

3 Another Analysis: Constant Propagation

4 Undecidability of the MOP Solution

Semantics and Verification of Software Summer Semester 2010 16

Undecidability of the MOP Solution

Theorem 22.8 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Semantics and Verification of Software Summer Semester 2010 17

Undecidability of the MOP Solution

Theorem 22.8 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let Γ be some alphabet, n ∈ N, and u1, . . . , un, v1, . . . , vn ∈ Γ+.
Does there exist i1, . . . , im ∈ {1, . . . , n} with m ≥ 1 and i1 = 1 such
that ui1ui2 . . . uim = vi1vi2 . . . vim?

(on the board)

Semantics and Verification of Software Summer Semester 2010 17

	Repetition: The Dataflow Analysis Framework
	The MOP Solution
	Another Analysis: Constant Propagation
	Undecidability of the MOP Solution

