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Dataflow Systems

Definition (Dataflow system)

A dataflow system S = (L, E, F, (D,C),, ) consists of

a finite set of (program) labels L (here: L),

a set of extremal labels E C L (here: {init(c)} or final(c)),
a flow relation F C L x L (here: flow(c) or flow*(c)),

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

o an extremal value ¢ € D (for the extremal labels), and

©

e ¢ ¢

@ a collection of monotonic transfer functions {¢; | I € L} of type
wr:D— D.
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The Equation System

Definition (Dataflow equation system)

Let S = (L,E,F,(D,C),t,¢) be a dataflow system. S defines the
following equation system over the set of variables {Al; | [ € L}:

Al = L ifle B
L LI{ew(Aly) | (I',1) € F} otherwise
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The Functional and Its Fixpoint

Definition (Dataflow functional)

The equation system of a dataflow system S = (L, E, F, (D,C), ¢, )
induces a functional

$g: D" — D" : (dyy,....dy,) — (dy,....,d})
where L = {ly,...,l,} and, for each 1 <i <mn,

A R
dy, = {Ll{gpl/ (dp) | (I',l;) € F}  otherwise

The least fixpoint of ®g is effectively computable by iteration:
fix(@s) = L{@4(Lpn) | € N}
where Lpn = (Lp,...,L1p)
——— —

n times
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© The MOP Solution
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The MOP Solution I

@ Other solution method for dataflow systems
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The MOP Solution I

@ Other solution method for dataflow systems
o MOP = Meet Over all Paths
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The MOP Solution I

@ Other solution method for dataflow systems

o MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [
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The MOP Solution I

@ Other solution method for dataflow systems
o MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [

Definition 22.1 (Paths)

Let S = (L,E,F,(D,C),t,p) be a dataflow system. For every [ € L,
the set of paths up to [ is given by

Path(l) == {[l1, ..., le_1] [ k> 1,01 € B,
(liyliv1) € F for every 1 < i < k,l =1}.
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The MOP Solution I

@ Other solution method for dataflow systems
o MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [

Definition 22.1 (Paths)

Let S = (L,E,F,(D,C),t,p) be a dataflow system. For every [ € L,
the set of paths up to [ is given by

Path(l) == {[l1, ..., le_1] [ k> 1,01 € B,
(liyliv1) € F for every 1 < i < k,l =1}.

For a path p = [l1,...,lxk—1] € Path(l), we define the transfer function
¢p: D — D by
Ppi=y,_, °...0¢, oidp

(so that oy = idp).
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The MOP Solution I1

Definition 22.2 (MOP solution)

Let S = (L,E,F,(D,C),¢,p) be a dataflow system where
L={l,...,l,}. The MOP solution for S is determined by

mop(S) o= (mop(ll)v SRR mop(ln)) S
where, for every [ € L,

mop(l) := |_[{ep(e) | p € Path(1)}.

m Semantics and Verification of Software Summer Semester 2010



The MOP Solution I1

Definition 22.2 (MOP solution)

Let S = (L,E,F,(D,C),¢,p) be a dataflow system where
L={l,...,l,}. The MOP solution for S is determined by

mop(S) o= (mop(ll)v SRR mop(ln)) S
where, for every [ € L,

mop(l) := |_[{ep(e) | p € Path(1)}.

Remark:
o Path(l) is generally infinite

—> not clear how to compute mop(l)

m Semantics and Verification of Software Summer Semester 2010



The MOP Solution I1

Definition 22.2 (MOP solution)

Let S = (L,E,F,(D,C),¢,p) be a dataflow system where
L={l,...,l,}. The MOP solution for S is determined by

mop(S) o= (mop(ll)v SRR mop(ln)) S
where, for every [ € L,

mop(l) := |_[{ep(e) | p € Path(1)}.

Remark:
o Path(l) is generally infinite
—> not clear how to compute mop(l)
@ In fact: MOP solution generally undecidable (later)
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2';
[y := 4%
[x := 1]3;
if [y > 0]* then
[z := =
else
[z = y*yl%
[x := 2"
— Path(1) = {]7,5,4,3,2],
[7,6,4,3,2]}
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1) = ¢[7,54,32 (1) UP764,32()
[y = 4%
[x := 1]3;
if [y > 0]* then
[z := %
else
[z := yxy)%
[x := 2"
— Path(1) = {]7,5,4,3,2],
[7,6,4,3,2]}
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1l) = @[7,54,3,2(4) UPre432()
y == 4% = oa(p3(pa(ps(pr({x,y,2}))))) U
x = 1]%; w2(03(0a(es(r({x,y,2})))))
if [y > 0]* then
[z := %’
else
[z := y*y]°%;
[x := 2"
— Path(1) = {[7,5,4,3,2),
[7,6,4,3,2]}
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1l) = @[7,54,3,2(4) UPre432()
y == 4% = pa(p3(pa(es(er({x,y,2}))))) U
x := 1% P2(p3(pa(ps(pr({x,,2})))))
if [y > 0]* then = 902( 3(pa(ps({y,2})))) U
[z := x]° p2(p3(palps({y,2}))))
else
[z = yy]%;
[x := 2"
— Path(1) = {[7,5,4,3,2],
[7,6,4,3,2]}
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1l) = @[7,54,3,2(4) UPre432()
[y := 4% = p2(p3(pa(es(er({x,y,2}))))) U
[x := 1]3%; P2(p3(wa(ps(pr({x,5,2})))))
if [y > 0]* then = pa(p3(pa(ps({y, 2})))) U
[z := x]° P2(p3(wa(ps({y, 2}))))
else = @2(@3(@4({ ;yH) U
[ [z ==]7y*y]6: o2(p3(ea({y})))
— Path(1) = {[7,5,4,3,2],
[7,6,4,3,2]}
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1l) = @[7,54,3,2(4) UPre432()
[y := 4% = p2(p3(palps(er({x,y,2}))))) U
[x := 1]3; P2(p3(pa(ps(pr({x,,2})))))
if [y > 0] then = 902(903(904( 5({y,2})))) U
z := x| p2(03(palps({y, 2}))))
else = @2(%03(804({3{ y}H)) U
[z := y*y]%; p2(p3(pa({y})))
[x := Z]” = @2(803({ ,¥1) Uez(es({y})
= Path(1) ={][7,5,4,3,2],
7,6,4,3,2]}




The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2'; = mop(1l) = @[7,54,3,2(4) UPre432()
[y := 4% = p2(p3(palps(er({x,y,2}))))) U
x = 1% p2(p3(palps(pr({x,y,2})))))
if [y > 0]* then = pa(p3(pa(ps({y,2})))) U
[z := x]° p2(3(pa(ps({y, 2z}))))
else = @2(%03(804({3{ y}H)) U
[z := yxy]%; p2(p3(pa({y})))
[x := Z]” = @2(803({ ,¥1) Uea(es({y})
[7,6,4,3,2]}




The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1l) = @[7,54,3,2(4) UPre432()
[y := 4% = p2(p3(a(ps(er({x,y,2}))))) U
[x := 1]3%; P2(p3(wa(ps(pr({x,5,2})))))
if [y > 0] then = 902(903(904( s({y,z})))) U
[z := x]° P2(p3(wa(ps({y, 2}))))
else = s02(s03(s04({X y}))) U
[z := y*y]°; p2(3(pa({y})))
[x := 2] = p2(p3({x,7})) U p2(p3({y}))
— Path(1) = {[7,5,4,3,2), B 52(% y}) Uea({y})
[7,6,4,3,2]} -




The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1l) = @[7,54,3,2(4) UPre432()
[y := 4% = p2(p3(palps(er({x,y,2}))))) U
[x := 1]3; w2(p3(palps(r({x,y,2})))))
if [y > 0] then = 902(903(904( 5({y,2})))) U
[z := %’ p2(p3(palvs({y,2z}))))
else = @2(%03(804({3{ y}H)) U
[z := y*y]%; p2(p3(pa({y})))
x := 2] = pa2(p3({x,y})) Uwa(ws({y}))
—> Path(1) = {[7,5,4,3,2], - 52(% y3) Hex(iy))
[7,6,4,3,2]} _ 0




© Another Analysis: Constant Propagation
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

e =

1]
[y == 1]%
[z := 1]3;
while [z > 0]* do
[ = x+y]%;
if [w = 2% then
x := y+2f”
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

[x := 1]1;
o= 2.
Fz’ - Hsf o y=z=1at labels 4-7
while [z > 0]* do
v o= xy)®s
if [w = 2]° then
x o= y+2f
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

= 1]
= 1]2.
g - Hsf o y=z=1at labels 4-7
while [z ’> 0]* do @ w, x not constant at labels 4-7
W o= x4yl
if [w = 2]° then
[x := y+2]7
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

[x = 1]}
=1 2;
g := 1}3; @ y =z =1 at labels 4-7
while [z > 0]* do @ w, x not constant at labels 4-7
[w := x+y]°; @ possible optimizations:
if [w = 2% then W := x+1)® [x := 3|"
x := ye2l”
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Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,C),, ) is given by
set of labels L := L,
extremal labels E := {init(c)} (forward problem),
flow relation F' := flow(c) (forward problem),
complete lattice (D, C) where
o D:={6|6: Var. - ZU{L, T}}
@ §(z) = z € Z: z has constant value z
@ 0(x) = L: z undefined
@ 0(x) = T: z overdefined (i.e., different possible values)
o CC D x D defined by pointwise extension of 1 C z = T
(for every z € Z)

e 6 ¢ ¢
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Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,C),, ) is given by
set of labels L := L,
extremal labels E := {init(c)} (forward problem),
flow relation F' := flow(c) (forward problem),
complete lattice (D, C) where
o D:={6|6: Var. - ZU{L, T}}
@ 0(xz) = z € Z: x has constant value z
@ 0(x) = L: z undefined
@ 0(x) = T: z overdefined (i.e., different possible values)
o CC D x D defined by pointwise extension of 1 C z = T
(for every z € Z)

e 6 ¢ ¢
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Formalizing Constant Propagation Analysis II

Dataflow system S = (L, E, F,(D,C),t, ) (continued):
o extremal value ¢ := §1 € D where 67 (z) := T for every z € Var,,

o transfer functions {¢; | [ € L} defined by

(5) = 0 if B! = skip or B! € BExp
PO =l o A[a]d] if B = (z := a)
where
— z10p 2o if 21,29 €Z
g%ﬁ%g _ g(x) Alay op az]0 := q L ifz1=_Lorz=_1
- T otherwise

for z; := Afa1]6 and zg := Afas]d
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Formalizing Constant Propagation Analysis III

Example 22.6

Ifé=(L, 1, 2 T), then
w X y z

(0, 1,2 T) ifB=(w:=0)

=

w X y 4
(3, 1,2 T) if Bl=(w := y+1)

_ w X y -4
PO =N (1. 1,2, T) ifB'=(w := wh)

w X y -4
(T, 1, 2 T) if Bb=(w := z+2)

~— =~

L W X y 4
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Formalizing Constant Propagation Analysis IV

Constant Propagation Analysis for

=[x :=1]}; p1((a,b,¢,d)) = (a,1,c,d)
b= w2((a,b,c,d)) = (a,b,1,d)
[z =1 v3((a,b,c,d)) = (a,b,c, 1)
while [z > 0]* do v4((a,b,c,d)) = (a,b,c,d)

[ := x+y]°; v5((a,b,¢c,d)) = (b+¢,b,c,d)
if [w = 2]® then  ¢¢((a,b,c,d)) = (a,b,c,d)

[x := y+2]7 v7((a,b,c,d)) = (a,c+2,¢,d)

Q Fixpoint solution (on the board)
© MOP solution (on the board)
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@ Undecidability of the MOP Solution
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Undecidability of the MOP Solution

Theorem 22.8 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.
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Undecidability of the MOP Solution

Theorem 22.8 (Undecidability of MOP solution)
The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let T" be some alphabet, n € N, and u1, ..., up, v1,...,0, € I'T.
Does there exist i1,...,4%, € {1,...,n} with m > 1 and i1 = 1 such

that w;, us, . .. s, = V3, Viy ... i, "7

(on the board) O
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