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Dataflow Systems

Definition (Dataflow system)

A dataflow system S = (L, E, F, (D,v), ι, ϕ) consists of

a finite set of (program) labels L (here: Lc),

a set of extremal labels E ⊆ L (here: {init(c)} or final(c)),

a flow relation F ⊆ L × L (here: flow(c) or flowR(c)),

a complete lattice (D,v) that satisfies ACC
(with LUB operator

⊔
and least element ⊥),

an extremal value ι ∈ D (for the extremal labels), and

a collection of monotonic transfer functions {ϕl | l ∈ L} of type
ϕl : D → D.
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The Equation System

Definition (Dataflow equation system)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. S defines the
following equation system over the set of variables {AIl | l ∈ L}:

AIl =

{
ι if l ∈ E
⊔
{ϕl′(AIl′) | (l′, l) ∈ F} otherwise
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The Functional and Its Fixpoint

Definition (Dataflow functional)

The equation system of a dataflow system S = (L, E, F, (D,v), ι, ϕ)
induces a functional

ΦS : Dn → Dn : (dl1 , . . . , dln) 7→ (d′l1 , . . . , d
′

ln
)

where L = {l1, . . . , ln} and, for each 1 ≤ i ≤ n,

d′li :=

{
ι if li ∈ E
⊔
{ϕl′(dl′) | (l′, li) ∈ F} otherwise

Corollary

The least fixpoint of ΦS is effectively computable by iteration:

fix(ΦS) =
⊔
{Φi

S(⊥Dn) | i ∈ N}
where ⊥Dn = (⊥D, . . . ,⊥D

︸ ︷︷ ︸

n times

)
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The MOP Solution I

Other solution method for dataflow systems
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The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths
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Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl = least upper bound over all
paths leading to l
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The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl = least upper bound over all
paths leading to l

Definition 22.1 (Paths)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. For every l ∈ L,
the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,

(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.
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The MOP Solution I

Other solution method for dataflow systems

MOP = Meet Over all Paths

Analysis information for block Bl = least upper bound over all
paths leading to l

Definition 22.1 (Paths)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. For every l ∈ L,
the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,

(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).
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The MOP Solution II

Definition 22.2 (MOP solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.
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The MOP Solution II

Definition 22.2 (MOP solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)
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The MOP Solution II

Definition 22.2 (MOP solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔

{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite

=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable (later)

Semantics and Verification of Software Summer Semester 2010 8



The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else
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The MOP Solution III
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}
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ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))
= ϕ2(ϕ3(ϕ4({x, y}))) t

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅
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The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

=⇒ Path(1) = {[7, 5, 4, 3, 2],
[7, 6, 4, 3, 2]}

=⇒ mop(1) = ϕ[7,5,4,3,2](ι) t ϕ[7,6,4,3,2](ι)
= ϕ2(ϕ3(ϕ4(ϕ5(ϕ7({x, y, z}))))) t

ϕ2(ϕ3(ϕ4(ϕ6(ϕ7({x, y, z})))))
= ϕ2(ϕ3(ϕ4(ϕ5({y, z})))) t

ϕ2(ϕ3(ϕ4(ϕ6({y, z}))))
= ϕ2(ϕ3(ϕ4({x, y}))) t

ϕ2(ϕ3(ϕ4({y})))
= ϕ2(ϕ3({x, y})) t ϕ2(ϕ3({y}))
= ϕ2({y}) t ϕ2({y})
= ∅ t ∅
= ∅
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7
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[z := 1]3;
while [z > 0]4 do
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if [w = 2]6 then
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y = z = 1 at labels 4–7
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Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

[x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

y = z = 1 at labels 4–7

w, x not constant at labels 4–7

possible optimizations:
[w := x+1]5 [x := 3]7
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Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,v), ι, ϕ) is given by

set of labels L := Lc,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,v) where

D := {δ | δ : Var c → Z ∪ {⊥,>}}
δ(x) = z ∈ Z: x has constant value z

δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., different possible values)

v⊆ D × D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)
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Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,v), ι, ϕ) is given by

set of labels L := Lc,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,v) where

D := {δ | δ : Var c → Z ∪ {⊥,>}}
δ(x) = z ∈ Z: x has constant value z

δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., different possible values)

v⊆ D × D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)

Example 22.5

Var c = {w, x, y, z},
δ1 = ( ⊥

︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, >
︸︷︷︸

z

), δ2 = ( 3
︸︷︷︸

w

, 1
︸︷︷︸

x

, 4
︸︷︷︸

y

, >
︸︷︷︸

z

)

=⇒ δ1 t δ2 = ( 3
︸︷︷︸

w

, 1
︸︷︷︸

x

, >
︸︷︷︸

y

, >
︸︷︷︸

z

)
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Formalizing Constant Propagation Analysis II

Dataflow system S = (L, E, F, (D,v), ι, ϕ) (continued):

extremal value ι := δ> ∈ D where δ>(x) := > for every x ∈ Var c,

transfer functions {ϕl | l ∈ L} defined by

ϕl(δ) :=

{
δ if Bl = skip or Bl ∈ BExp

δ[x 7→ AJaKδ] if Bl = (x := a)

where

AJxKδ := δ(x)
AJzKδ := z

AJa1 op a2Kδ :=







z1 op z2 if z1, z2 ∈ Z

⊥ if z1 = ⊥ or z2 = ⊥
> otherwise

for z1 := AJa1Kδ and z2 := AJa2Kδ
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Formalizing Constant Propagation Analysis III

Example 22.6

If δ = ( ⊥
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, >
︸︷︷︸

z

), then

ϕl(δ) =







( 0
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, >
︸︷︷︸

z

) if Bl = (w := 0)

( 3
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, >
︸︷︷︸

z

) if Bl = (w := y+1)

( ⊥
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, >
︸︷︷︸

z

) if Bl = (w := w+x)

( >
︸︷︷︸

w

, 1
︸︷︷︸

x

, 2
︸︷︷︸

y

, >
︸︷︷︸

z

) if Bl = (w := z+2)
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Formalizing Constant Propagation Analysis IV

Example 22.7

Constant Propagation Analysis for

c := [x := 1]1;
[y := 1]2;
[z := 1]3;
while [z > 0]4 do

[w := x+y]5;
if [w = 2]6 then

[x := y+2]7

ϕ1((a, b, c, d)) = (a, 1, c, d)
ϕ2((a, b, c, d)) = (a, b, 1, d)
ϕ3((a, b, c, d)) = (a, b, c, 1)
ϕ4((a, b, c, d)) = (a, b, c, d)
ϕ5((a, b, c, d)) = (b + c, b, c, d)
ϕ6((a, b, c, d)) = (a, b, c, d)
ϕ7((a, b, c, d)) = (a, c + 2, c, d)

1 Fixpoint solution (on the board)

2 MOP solution (on the board)
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1 Repetition: The Dataflow Analysis Framework

2 The MOP Solution

3 Another Analysis: Constant Propagation
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Undecidability of the MOP Solution

Theorem 22.8 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.
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Undecidability of the MOP Solution

Theorem 22.8 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let Γ be some alphabet, n ∈ N, and u1, . . . , un, v1, . . . , vn ∈ Γ+.
Does there exist i1, . . . , im ∈ {1, . . . , n} with m ≥ 1 and i1 = 1 such
that ui1ui2 . . . uim = vi1vi2 . . . vim?

(on the board)
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