Semantics and Verification of Software

Lecture 22: Dataflow Analysis V
(The MOP Solution)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

© Repetition: The Dataflow Analysis Framework

Rm Semantics and Verification of Software Summer Semester 2010

Dataflow Systems

Definition (Dataflow system)

A dataflow system S = (L, E, F, (D,C),,) consists of

a finite set of (program) labels L (here: L),

a set of extremal labels E C L (here: {init(c)} or final(c)),
a flow relation F C L x L (here: flow(c) or flow*(c)),

a complete lattice (D, C) that satisfies ACC
(with LUB operator | | and least element L),

o an extremal value ¢ € D (for the extremal labels), and

©

e ¢ ¢

@ a collection of monotonic transfer functions {¢; | I € L} of type
wr:D— D.

m' Semantics and Verification of Software Summer Semester 2010

The Equation System

Definition (Dataflow equation system)

Let S = (L,E,F,(D,C),t,¢) be a dataflow system. S defines the
following equation system over the set of variables {Al; | [€ L}:

Al = L ifle B
L LI{ew(Aly) | (I',1) € F} otherwise

m' Semantics and Verification of Software Summer Semester 2010

The Functional and Its Fixpoint

Definition (Dataflow functional)

The equation system of a dataflow system S = (L, E, F, (D,C), ¢,)
induces a functional

$g: D" — D" : (dyy,....dy,) — (dy,....,d})
where L = {ly,...,l,} and, for each 1 <i <mn,

A R
dy, = {Ll{gpl/ (dp) | (I',l;) € F} otherwise

The least fixpoint of ®g is effectively computable by iteration:
fix(@s) = L{@4(Lpn) | € N}
where Lpn = (Lp,...,L1p)
——— —

n times

m' Semantics and Verification of Software Summer Semester 2010

© The MOP Solution

Rm Semantics and Verification of Software Summer Semester 2010

The MOP Solution I

@ Other solution method for dataflow systems

Rm Semantics and fication of Software Summer Semester 2010

The MOP Solution I

@ Other solution method for dataflow systems
o MOP = Meet Over all Paths

Rm Semantics and Verification of Software Summer Semester 2010

The MOP Solution I

@ Other solution method for dataflow systems

o MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [

Rm Semantics and Verification of Software Summer Semester 2010

The MOP Solution I

@ Other solution method for dataflow systems
o MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [

Definition 22.1 (Paths)

Let S = (L,E,F,(D,C),t,p) be a dataflow system. For every [€ L,
the set of paths up to [is given by

Path(l) == {[l1, ..., le_1] [k> 1,01 € B,
(liyliv1) € F for every 1 < i < k,l =1}.

m' Semantics and Verification of Software Summer Semester 2010

The MOP Solution I

@ Other solution method for dataflow systems
o MOP = Meet Over all Paths

@ Analysis information for block B! = least upper bound over all
paths leading to [

Definition 22.1 (Paths)

Let S = (L,E,F,(D,C),t,p) be a dataflow system. For every [€ L,
the set of paths up to [is given by

Path(l) == {[l1, ..., le_1] [k> 1,01 € B,
(liyliv1) € F for every 1 < i < k,l =1}.

For a path p = [l1,...,lxk—1] € Path(l), we define the transfer function
¢p: D — D by
Ppi=y,_, °...0¢, oidp

(so that oy = idp).

m' Semantics and Verification of Software Summer Semester 2010

The MOP Solution I1

Definition 22.2 (MOP solution)

Let S = (L,E,F,(D,C),¢,p) be a dataflow system where
L={l,...,l,}. The MOP solution for S is determined by

mop(S) o= (mop(ll)v SRR mop(ln)) S
where, for every [€ L,

mop(l) := |_[{ep(e) | p € Path(1)}.

m Semantics and Verification of Software Summer Semester 2010

The MOP Solution I1

Definition 22.2 (MOP solution)

Let S = (L,E,F,(D,C),¢,p) be a dataflow system where
L={l,...,l,}. The MOP solution for S is determined by

mop(S) o= (mop(ll)v SRR mop(ln)) S
where, for every [€ L,

mop(l) := |_[{ep(e) | p € Path(1)}.

Remark:
o Path(l) is generally infinite

—> not clear how to compute mop(l)

m Semantics and Verification of Software Summer Semester 2010

The MOP Solution I1

Definition 22.2 (MOP solution)

Let S = (L,E,F,(D,C),¢,p) be a dataflow system where
L={l,...,l,}. The MOP solution for S is determined by

mop(S) o= (mop(ll)v SRR mop(ln)) S
where, for every [€ L,

mop(l) := |_[{ep(e) | p € Path(1)}.

Remark:
o Path(l) is generally infinite
—> not clear how to compute mop(l)
@ In fact: MOP solution generally undecidable (later)

m Semantics and Verification of Software Summer Semester 2010

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

m Semantics and Verification of Software Summer Semester 2010

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2';
[y := 4%
[x := 1]3;
if [y > 0]* then
[z := =
else
[z = y*yl%
[x := 2"
— Path(1) = {]7,5,4,3,2],
[7,6,4,3,2]}

m Semantics and Verification of Software Summer Semester 2010

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1) = ¢[7,54,32 (1) UP764,32()
[y = 4%
[x := 1]3;
if [y > 0]* then
[z := %
else
[z := yxy)%
[x := 2"
— Path(1) = {]7,5,4,3,2],
[7,6,4,3,2]}

m Semantics and Verification of Software Summer Semester 2010

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1l) = @[7,54,3,2(4) UPre432()
y == 4% = oa(p3(pa(ps(pr({x,y,2}))))) U
x = 1]%; w2(03(0a(es(r({x,y,2})))))
if [y > 0]* then
[z := %’
else
[z := y*y]°%;
[x := 2"
— Path(1) = {[7,5,4,3,2),
[7,6,4,3,2]}

m Semantics and Verification of Software Summer Semester 2010 9

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1l) = @[7,54,3,2(4) UPre432()
y == 4% = pa(p3(pa(es(er({x,y,2}))))) U
x := 1% P2(p3(pa(ps(pr({x,,2})))))
if [y > 0]* then = 902(3(pa(ps({y,2})))) U
[z := x]° p2(p3(palps({y,2}))))
else
[z = yy]%;
[x := 2"
— Path(1) = {[7,5,4,3,2],
[7,6,4,3,2]}

m Semantics and Verification of Software Summer Semester 2010 9

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1l) = @[7,54,3,2(4) UPre432()
[y := 4% = p2(p3(pa(es(er({x,y,2}))))) U
[x := 1]3%; P2(p3(wa(ps(pr({x,5,2})))))
if [y > 0]* then = pa(p3(pa(ps({y, 2})))) U
[z := x]° P2(p3(wa(ps({y, 2}))))
else = @2(@3(@4({ ;yH) U
[[z ==]7y*y]6: o2(p3(ea({y})))
— Path(1) = {[7,5,4,3,2],
[7,6,4,3,2]}

m Semantics and Verification of Software Summer Semester 2010 9

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1l) = @[7,54,3,2(4) UPre432()
[y := 4% = p2(p3(palps(er({x,y,2}))))) U
[x := 1]3; P2(p3(pa(ps(pr({x,,2})))))
if [y > 0] then = 902(903(904(5({y,2})))) U
z := x| p2(03(palps({y, 2}))))
else = @2(%03(804({3{ y}H)) U
[z := y*y]%; p2(p3(pa({y})))
[x := Z]” = @2(803({ ,¥1) Uez(es({y})
= Path(1) ={][7,5,4,3,2],
7,6,4,3,2]}

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2'; = mop(1l) = @[7,54,3,2(4) UPre432()
[y := 4% = p2(p3(palps(er({x,y,2}))))) U
x = 1% p2(p3(palps(pr({x,y,2})))))
if [y > 0]* then = pa(p3(pa(ps({y,2})))) U
[z := x]° p2(3(pa(ps({y, 2z}))))
else = @2(%03(804({3{ y}H)) U
[z := yxy]%; p2(p3(pa({y})))
[x := Z]” = @2(803({ ,¥1) Uea(es({y})
[7,6,4,3,2]}

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1l) = @[7,54,3,2(4) UPre432()
[y := 4% = p2(p3(a(ps(er({x,y,2}))))) U
[x := 1]3%; P2(p3(wa(ps(pr({x,5,2})))))
if [y > 0] then = 902(903(904(s({y,z})))) U
[z := x]° P2(p3(wa(ps({y, 2}))))
else = s02(s03(s04({X y}))) U
[z := y*y]°; p2(3(pa({y})))
[x := 2] = p2(p3({x,7})) U p2(p3({y}))
— Path(1) = {[7,5,4,3,2), B 52(% y}) Uea({y})
[7,6,4,3,2]} -

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

c=[x := 2]'; = mop(1l) = @[7,54,3,2(4) UPre432()
[y := 4% = p2(p3(palps(er({x,y,2}))))) U
[x := 1]3; w2(p3(palps(r({x,y,2})))))
if [y > 0] then = 902(903(904(5({y,2})))) U
[z := %’ p2(p3(palvs({y,2z}))))
else = @2(%03(804({3{ y}H)) U
[z := y*y]%; p2(p3(pa({y})))
x := 2] = pa2(p3({x,y})) Uwa(ws({y}))
—> Path(1) = {[7,5,4,3,2], - 52(% y3) Hex(iy))
[7,6,4,3,2]} _ 0

© Another Analysis: Constant Propagation

Rm Semantics and Verification of Software Summer Semester 2010 10

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Rm Semantics and Verification of Software Summer Semester 2010 11

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

m' Semantics and Verification of Software Summer Semester 2010

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

e =

1]
[y == 1]%
[z := 1]3;
while [z > 0]* do
[= x+y]%;
if [w = 2% then
x := y+2f”

m' Semantics and Verification of Software Summer Semester 2010

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

[x := 1]1;
o= 2.
Fz’ - Hsf o y=z=1at labels 4-7
while [z > 0]* do
v o= xy)®s
if [w = 2]° then
x o= y+2f

m' Semantics and Verification of Software Summer Semester 2010

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

= 1]
= 1]2.
g - Hsf o y=z=1at labels 4-7
while [z ’> 0]* do @ w, x not constant at labels 4-7
W o= x4yl
if [w = 2]° then
[x := y+2]7

m' Semantics and Verification of Software Summer Semester 2010

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of Constant Propagation Analysis is to determine, for each
program point, whether a variable has a constant value whenever
execution reaches that point.

Used for Constant Folding: replace reference to variable by constant
value

Example 22.4 (Constant Propagation Analysis)

[x = 1]}
=1 2;
g := 1}3; @ y =z =1 at labels 4-7
while [z > 0]* do @ w, x not constant at labels 4-7
[w := x+y]°; @ possible optimizations:
if [w = 2% then W := x+1)® [x := 3|"
x := ye2l”

m' Semantics and Verification of Software Summer Semester 2010

Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,C),,) is given by
set of labels L := L,
extremal labels E := {init(c)} (forward problem),
flow relation F' := flow(c) (forward problem),
complete lattice (D, C) where
o D:={6|6: Var. - ZU{L, T}}
@ §(z) = z € Z: z has constant value z
@ 0(x) = L: z undefined
@ 0(x) = T: z overdefined (i.e., different possible values)
o CC D x D defined by pointwise extension of 1 C z = T
(for every z € Z)

e 6 ¢ ¢

Rm Semantics and Verification of Software Summer Semester 2010

Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,C),,) is given by
set of labels L := L,
extremal labels E := {init(c)} (forward problem),
flow relation F' := flow(c) (forward problem),
complete lattice (D, C) where
o D:={6|6: Var. - ZU{L, T}}
@ 0(xz) = z € Z: x has constant value z
@ 0(x) = L: z undefined
@ 0(x) = T: z overdefined (i.e., different possible values)
o CC D x D defined by pointwise extension of 1 C z = T
(for every z € Z)

e 6 ¢ ¢

Semantics and Verification of Software Summer Semester 2010

Formalizing Constant Propagation Analysis II

Dataflow system S = (L, E, F,(D,C),t,) (continued):
o extremal value ¢ := §1 € D where 67 (z) := T for every z € Var,,

o transfer functions {¢; | [€ L} defined by

(5) = 0 if B! = skip or B! € BExp
PO =l o A[a]d] if B = (z := a)
where
— z10p 2o if 21,29 €Z
g%ﬁ%g _ g(x) Alay op az]0 := q L ifz1=_Lorz=_1
- T otherwise

for z; := Afa1]6 and zg := Afas]d

Rm Semantics and Verification of Software Summer Semester 2010 13

Formalizing Constant Propagation Analysis III

Example 22.6

Ifé=(L, 1, 2 T), then
w X y z

(0, 1,2 T) ifB=(w:=0)

=

w X y 4
(3, 1,2 T) if Bl=(w := y+1)

_ w X y -4
PO =N (1. 1,2, T) ifB'=(w := wh)

w X y -4
(T, 1, 2 T) if Bb=(w := z+2)

~— =~

L W X y 4

Semantics and Verification of Software Summer Semester 2010 14

Formalizing Constant Propagation Analysis IV

Constant Propagation Analysis for

=[x :=1]}; p1((a,b,¢,d)) = (a,1,c,d)
b= w2((a,b,c,d)) = (a,b,1,d)
[z =1 v3((a,b,c,d)) = (a,b,c, 1)
while [z > 0]* do v4((a,b,c,d)) = (a,b,c,d)

[:= x+y]°; v5((a,b,¢c,d)) = (b+¢,b,c,d)
if [w = 2]® then ¢¢((a,b,c,d)) = (a,b,c,d)

[x := y+2]7 v7((a,b,c,d)) = (a,c+2,¢,d)

Q Fixpoint solution (on the board)
© MOP solution (on the board)

Semantics and Verification of Software Summer Semester 2010

@ Undecidability of the MOP Solution

Rm Semantics and fication of Software Summer Semester 2010 16

Undecidability of the MOP Solution

Theorem 22.8 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Rm Semantics and Verification of Software Summer Semester 2010 17

Undecidability of the MOP Solution

Theorem 22.8 (Undecidability of MOP solution)
The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let T" be some alphabet, n € N, and u1, ..., up, v1,...,0, € I'T.
Does there exist i1,...,4%, € {1,...,n} with m > 1 and i1 = 1 such

that w;, us, . .. s, = V3, Viy ... i, "7

(on the board) O

m Semantics and Verification of Software Summer Semester 2010 17

	Repetition: The Dataflow Analysis Framework
	The MOP Solution
	Another Analysis: Constant Propagation
	Undecidability of the MOP Solution

