

Semantics and Verification of Software

Lecture 22: Dataflow Analysis V (The MOP Solution)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw10/>

Summer Semester 2010

- 1 Repetition: The Dataflow Analysis Framework
- 2 The MOP Solution
- 3 Another Analysis: Constant Propagation
- 4 Undecidability of the MOP Solution

Definition (Dataflow system)

A **dataflow system** $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ consists of

- a finite set of (program) **labels** L (here: L_c),
- a set of **extremal labels** $E \subseteq L$ (here: $\{\text{init}(c)\}$ or $\text{final}(c)$),
- a **flow relation** $F \subseteq L \times L$ (here: $\text{flow}(c)$ or $\text{flow}^R(c)$),
- a **complete lattice** (D, \sqsubseteq) that satisfies ACC
(with LUB operator \sqcup and least element \perp),
- an **extremal value** $\iota \in D$ (for the extremal labels), and
- a collection of **monotonic transfer functions** $\{\varphi_l \mid l \in L\}$ of type $\varphi_l : D \rightarrow D$.

The Equation System

Definition (Dataflow equation system)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. S defines the following **equation system** over the set of variables $\{\text{Al}_l \mid l \in L\}$:

$$\text{Al}_l = \begin{cases} \iota & \text{if } l \in E \\ \bigsqcup \{\varphi_{l'}(\text{Al}_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

The Functional and Its Fixpoint

Definition (Dataflow functional)

The equation system of a dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ induces a **functional**

$$\Phi_S : D^n \rightarrow D^n : (d_{l_1}, \dots, d_{l_n}) \mapsto (d'_{l_1}, \dots, d'_{l_n})$$

where $L = \{l_1, \dots, l_n\}$ and, for each $1 \leq i \leq n$,

$$d'_{l_i} := \begin{cases} \iota & \text{if } l_i \in E \\ \bigsqcup \{\varphi_{l'}(d_{l'}) \mid (l', l_i) \in F\} & \text{otherwise} \end{cases}$$

Corollary

The least fixpoint of Φ_S is effectively computable by iteration:

$$\text{fix}(\Phi_S) = \bigsqcup \{\Phi_S^i(\perp_{D^n}) \mid i \in \mathbb{N}\}$$

where $\perp_{D^n} = (\underbrace{\perp_D, \dots, \perp_D}_{n \text{ times}})$

- 1 Repetition: The Dataflow Analysis Framework
- 2 The MOP Solution
- 3 Another Analysis: Constant Propagation
- 4 Undecidability of the MOP Solution

- Other **solution method** for dataflow systems

- Other **solution method** for dataflow systems
- MOP = **Meet Over all Paths**

- Other **solution method** for dataflow systems
- MOP = **Meet Over all Paths**
- Analysis information for block B^l = **least upper bound over all paths leading to l**

- Other **solution method** for dataflow systems
- MOP = **Meet Over all Paths**
- Analysis information for block B^l = **least upper bound over all paths leading to l**

Definition 22.1 (Paths)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. For every $l \in L$, the set of **paths up to l** is given by

$$\begin{aligned} \text{Path}(l) := \{[l_1, \dots, l_{k-1}] \mid k \geq 1, l_1 \in E, \\ (l_i, l_{i+1}) \in F \text{ for every } 1 \leq i \leq k, l_k = l\}. \end{aligned}$$

- Other **solution method** for dataflow systems
- MOP = **Meet Over all Paths**
- Analysis information for block B^l = **least upper bound over all paths leading to l**

Definition 22.1 (Paths)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system. For every $l \in L$, the set of **paths up to l** is given by

$$\text{Path}(l) := \{[l_1, \dots, l_{k-1}] \mid k \geq 1, l_1 \in E, (l_i, l_{i+1}) \in F \text{ for every } 1 \leq i \leq k, l_k = l\}.$$

For a path $p = [l_1, \dots, l_{k-1}] \in \text{Path}(l)$, we define the **transfer function** $\varphi_p : D \rightarrow D$ by

$$\varphi_p := \varphi_{l_{k-1}} \circ \dots \circ \varphi_{l_1} \circ \text{id}_D$$

(so that $\varphi_{[]} = \text{id}_D$).

Definition 22.2 (MOP solution)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $L = \{l_1, \dots, l_n\}$. The **MOP solution** for S is determined by

$$\mathsf{mop}(S) := (\mathsf{mop}(l_1), \dots, \mathsf{mop}(l_n)) \in D^n$$

where, for every $l \in L$,

$$\mathsf{mop}(l) := \bigsqcup \{\varphi_p(\iota) \mid p \in \text{Path}(l)\}.$$

Definition 22.2 (MOP solution)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $L = \{l_1, \dots, l_n\}$. The **MOP solution** for S is determined by

$$\mathbf{mop}(S) := (\mathbf{mop}(l_1), \dots, \mathbf{mop}(l_n)) \in D^n$$

where, for every $l \in L$,

$$\mathbf{mop}(l) := \bigsqcup \{\varphi_p(\iota) \mid p \in \text{Path}(l)\}.$$

Remark:

- $\text{Path}(l)$ is generally infinite

⇒ not clear how to compute $\mathbf{mop}(l)$

Definition 22.2 (MOP solution)

Let $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ be a dataflow system where $L = \{l_1, \dots, l_n\}$. The **MOP solution** for S is determined by

$$\mathbf{mop}(S) := (\mathbf{mop}(l_1), \dots, \mathbf{mop}(l_n)) \in D^n$$

where, for every $l \in L$,

$$\mathbf{mop}(l) := \bigsqcup \{\varphi_p(\iota) \mid p \in \text{Path}(l)\}.$$

Remark:

- $\text{Path}(l)$ is generally infinite

⇒ not clear how to compute $\mathbf{mop}(l)$

- In fact: MOP solution generally undecidable (later)

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

```
c = [x := 2]1;  
[y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

```
c = [x := 2]1;  
[y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

$\implies Path(1) = \{[7, 5, 4, 3, 2],$
 $[7, 6, 4, 3, 2]\}$

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
         [z := x]5  
     else  
         [z := y*y]6;  
         [x := z]7
```

$\implies Path(1) = \{[7, 5, 4, 3, 2],$
 $[7, 6, 4, 3, 2]\}$

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

$c = [x := 2]^1; [y := 4]^2; [x := 1]^3;$ $\implies \text{mop}(1) = \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota)$
 $\text{if } [y > 0]^4 \text{ then}$ $= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup$
 $[z := x]^5$ $\varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\}))))))$
 else
 $[z := y*y]^6;$
 $[x := z]^7$
 $\implies Path(1) = \{[7, 5, 4, 3, 2], [7, 6, 4, 3, 2]\}$

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

```

c = [x := 2]1;
      [y := 4]2;
      [x := 1]3;
      if [y > 0]4 then
          [z := x]5
      else
          [z := y*y]6;
      [x := z]7
  
```

$$\begin{aligned}
 \implies \text{mop}(1) &= \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\
 &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \\
 &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\})))))) \\
 &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y, z\})))) \sqcup \\
 &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{y, z\})))) \\
 \end{aligned}$$

$$\implies Path(1) = \{[7, 5, 4, 3, 2], [7, 6, 4, 3, 2]\}$$

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

$$\begin{aligned}
 c = & [x := 2]^1; & \implies \text{mop}(1) = \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\
 & [y := 4]^2; & = \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \\
 & [x := 1]^3; & \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\})))))) \\
 \text{if } & [y > 0]^4 \text{ then} & = \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y, z\})))) \sqcup \\
 & [z := x]^5 & \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{y, z\})))) \\
 \text{else} & & = \varphi_2(\varphi_3(\varphi_4(\{x, y\}))) \sqcup \\
 & [z := y*y]^6; & \varphi_2(\varphi_3(\varphi_4(\{y\}))) \\
 [x := z]^7 & &
 \end{aligned}$$

$$\implies Path(1) = \{[7, 5, 4, 3, 2], [7, 6, 4, 3, 2]\}$$

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

$$\begin{aligned}
 c = & [x := 2]^1; & \implies \text{mop}(1) = \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\
 & [y := 4]^2; & = \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \\
 & [x := 1]^3; & \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\})))))) \\
 & \text{if } [y > 0]^4 \text{ then} & = \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y, z\})))) \sqcup \\
 & \quad [z := x]^5 & \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{y, z\})))) \\
 & \text{else} & = \varphi_2(\varphi_3(\varphi_4(\{x, y\}))) \sqcup \\
 & \quad [z := y*y]^6; & \varphi_2(\varphi_3(\varphi_4(\{y\}))) \\
 & [x := z]^7 & = \varphi_2(\varphi_3(\{x, y\})) \sqcup \varphi_2(\varphi_3(\{y\}))
 \end{aligned}$$

$$\implies Path(1) = \{[7, 5, 4, 3, 2], [7, 6, 4, 3, 2]\}$$

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

```

c = [x := 2]1;
      [y := 4]2;
      [x := 1]3;
      if [y > 0]4 then
          [z := x]5
      else
          [z := y*y]6;
      [x := z]7
  
```

$$\implies Path(1) = \{[7, 5, 4, 3, 2], [7, 6, 4, 3, 2]\}$$

$$\begin{aligned}
\implies \text{mop}(1) &= \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\
&= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \\
&\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\})))))) \\
&= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y, z\})))) \sqcup \\
&\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{y, z\})))) \\
&= \varphi_2(\varphi_3(\varphi_4(\{x, y\}))) \sqcup \\
&\quad \varphi_2(\varphi_3(\varphi_4(\{y\}))) \\
&= \varphi_2(\varphi_3(\{x, y\})) \sqcup \varphi_2(\varphi_3(\{y\})) \\
&= \varphi_2(\{y\}) \sqcup \varphi_2(\{y\})
\end{aligned}$$

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

```

c = [x := 2]1;
      [y := 4]2;
      [x := 1]3;
      if [y > 0]4 then
          [z := x]5
      else
          [z := y*y]6;
          [x := z]7

```

$\implies Path(1) = \{[7, 5]$

$$\begin{aligned}
\implies \text{mop}(1) &= \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\
&= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \\
&\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\})))))) \\
&= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y, z\})))) \sqcup \\
&\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{y, z\})))) \\
&= \varphi_2(\varphi_3(\varphi_4(\{x, y\}))) \sqcup \\
&\quad \varphi_2(\varphi_3(\varphi_4(\{y\}))) \\
&= \varphi_2(\varphi_3(\{x, y\})) \sqcup \varphi_2(\varphi_3(\{y\})) \\
&= \varphi_2(\{y\}) \sqcup \varphi_2(\{y\}) \\
&\equiv \emptyset \sqcup \emptyset
\end{aligned}$$

The MOP Solution III

Example 22.3 (Live Variables; cf. Examples 19.3 and 21.4)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
         [z := x]5  
     else  
         [z := y*y]6;  
     [x := z]7  
⇒ Path(1) = {[7, 5, 4, 3, 2],  
               [7, 6, 4, 3, 2]}
```

$$\begin{aligned} \Rightarrow \text{mop}(1) &= \varphi_{[7,5,4,3,2]}(\iota) \sqcup \varphi_{[7,6,4,3,2]}(\iota) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\varphi_7(\{x, y, z\})))))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\varphi_7(\{x, y, z\})))))) \\ &= \varphi_2(\varphi_3(\varphi_4(\varphi_5(\{y, z\})))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\varphi_6(\{y, z\})))) \\ &= \varphi_2(\varphi_3(\varphi_4(\{x, y\}))) \sqcup \\ &\quad \varphi_2(\varphi_3(\varphi_4(\{y\}))) \\ &= \varphi_2(\varphi_3(\{x, y\})) \sqcup \varphi_2(\varphi_3(\{y\})) \\ &= \varphi_2(\{y\}) \sqcup \varphi_2(\{y\}) \\ &= \emptyset \sqcup \emptyset \\ &= \emptyset \end{aligned}$$

- 1 Repetition: The Dataflow Analysis Framework
- 2 The MOP Solution
- 3 Another Analysis: Constant Propagation
- 4 Undecidability of the MOP Solution

Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value

Example 22.4 (Constant Propagation Analysis)

```
[x := 1]1;  
[y := 1]2;  
[z := 1]3;  
while [z > 0]4 do  
  [w := x+y]5;  
  if [w = 2]6 then  
    [x := y+2]7
```

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value

Example 22.4 (Constant Propagation Analysis)

```
[x := 1]1;  
[y := 1]2;  
[z := 1]3;  
while [z > 0]4 do  
  [w := x+y]5;  
  if [w = 2]6 then  
    [x := y+2]7
```

- $y = z = 1$ at labels 4–7

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value

Example 22.4 (Constant Propagation Analysis)

```
[x := 1]1;  
[y := 1]2;  
[z := 1]3;  
while [z > 0]4 do  
  [w := x+y]5;  
  if [w = 2]6 then  
    [x := y+2]7
```

- $y = z = 1$ at labels 4–7
- w, x not constant at labels 4–7

Goal of Constant Propagation Analysis

Constant Propagation Analysis

The goal of **Constant Propagation Analysis** is to determine, for each program point, whether a variable has a constant value whenever execution reaches that point.

Used for **Constant Folding**: replace reference to variable by constant value

Example 22.4 (Constant Propagation Analysis)

```
[x := 1]1;  
[y := 1]2;  
[z := 1]3;  
while [z > 0]4 do  
  [w := x+y]5;  
  if [w = 2]6 then  
    [x := y+2]7
```

- $y = z = 1$ at labels 4–7
- w, x not constant at labels 4–7
- possible optimizations:
 $w := x+1$ ⁵ $[x := 3]$ ⁷

Formalizing Constant Propagation Analysis I

The **dataflow system** $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ is given by

- set of labels $L := L_c$,
- extremal labels $E := \{\text{init}(c)\}$ (forward problem),
- flow relation $F := \text{flow}(c)$ (forward problem),
- complete lattice (D, \sqsubseteq) where
 - $D := \{\delta \mid \delta : \text{Var}_c \rightarrow \mathbb{Z} \cup \{\perp, \top\}\}$
 - $\delta(x) = z \in \mathbb{Z}$: x has **constant value** z
 - $\delta(x) = \perp$: x **undefined**
 - $\delta(x) = \top$: x **overdefined** (i.e., different possible values)
 - $\sqsubseteq \subseteq D \times D$ defined by pointwise extension of $\perp \sqsubseteq z \sqsubseteq \top$
(for every $z \in \mathbb{Z}$)

Formalizing Constant Propagation Analysis I

The **dataflow system** $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ is given by

- set of labels $L := L_c$,
- extremal labels $E := \{\text{init}(c)\}$ (forward problem),
- flow relation $F := \text{flow}(c)$ (forward problem),
- complete lattice (D, \sqsubseteq) where
 - $D := \{\delta \mid \delta : \text{Var}_c \rightarrow \mathbb{Z} \cup \{\perp, \top\}\}$
 - $\delta(x) = z \in \mathbb{Z}$: x has **constant value** z
 - $\delta(x) = \perp$: x **undefined**
 - $\delta(x) = \top$: x **overdefined** (i.e., different possible values)
 - $\sqsubseteq \subseteq D \times D$ defined by pointwise extension of $\perp \sqsubseteq z \sqsubseteq \top$
(for every $z \in \mathbb{Z}$)

Example 22.5

$$\begin{aligned} \text{Var}_c &= \{w, x, y, z\}, \\ \delta_1 &= (\underbrace{\perp}_w, \underbrace{1}_x, \underbrace{2}_y, \underbrace{\top}_z), \quad \delta_2 = (\underbrace{3}_w, \underbrace{1}_x, \underbrace{4}_y, \underbrace{\top}_z) \\ \implies \delta_1 \sqcup \delta_2 &= (\underbrace{3}_w, \underbrace{1}_x, \underbrace{\top}_y, \underbrace{\top}_z) \end{aligned}$$

Dataflow system $S = (L, E, F, (D, \sqsubseteq), \iota, \varphi)$ (continued):

- extremal value $\iota := \delta_{\top} \in D$ where $\delta_{\top}(x) := \top$ for every $x \in Var_c$,
- transfer functions $\{\varphi_l \mid l \in L\}$ defined by

$$\varphi_l(\delta) := \begin{cases} \delta & \text{if } B^l = \text{skip} \text{ or } B^l \in BExp \\ \delta[x \mapsto \mathfrak{A}\llbracket a \rrbracket \delta] & \text{if } B^l = (x := a) \end{cases}$$

where

$$\begin{aligned} \mathfrak{A}\llbracket x \rrbracket \delta &:= \delta(x) & \mathfrak{A}\llbracket a_1 \ op \ a_2 \rrbracket \delta &:= \begin{cases} z_1 \ op \ z_2 & \text{if } z_1, z_2 \in \mathbb{Z} \\ \perp & \text{if } z_1 = \perp \text{ or } z_2 = \perp \\ \top & \text{otherwise} \end{cases} \\ \mathfrak{A}\llbracket z \rrbracket \delta &:= z \end{aligned}$$

for $z_1 := \mathfrak{A}\llbracket a_1 \rrbracket \delta$ and $z_2 := \mathfrak{A}\llbracket a_2 \rrbracket \delta$

Example 22.6

If $\delta = (\underbrace{\perp}_w, \underbrace{1}_x, \underbrace{2}_y, \underbrace{\top}_z)$, then

$$\varphi_l(\delta) = \begin{cases} (\underbrace{0}_w, \underbrace{1}_x, \underbrace{2}_y, \underbrace{\top}_z) & \text{if } B^l = (w := 0) \\ (\underbrace{3}_w, \underbrace{1}_x, \underbrace{2}_y, \underbrace{\top}_z) & \text{if } B^l = (w := y+1) \\ (\underbrace{\perp}_w, \underbrace{1}_x, \underbrace{2}_y, \underbrace{\top}_z) & \text{if } B^l = (w := w+x) \\ (\underbrace{\top}_w, \underbrace{1}_x, \underbrace{2}_y, \underbrace{\top}_z) & \text{if } B^l = (w := z+2) \end{cases}$$

Example 22.7

Constant Propagation Analysis for

$c := [x := 1]^1;$	$\varphi_1((a, b, c, d)) = (a, 1, c, d)$
$[y := 1]^2;$	$\varphi_2((a, b, c, d)) = (a, b, 1, d)$
$[z := 1]^3;$	$\varphi_3((a, b, c, d)) = (a, b, c, 1)$
$\text{while } [z > 0]^4 \text{ do}$	$\varphi_4((a, b, c, d)) = (a, b, c, d)$
$[w := x+y]^5;$	$\varphi_5((a, b, c, d)) = (b + c, b, c, d)$
$\text{if } [w = 2]^6 \text{ then}$	$\varphi_6((a, b, c, d)) = (a, b, c, d)$
$[x := y+2]^7$	$\varphi_7((a, b, c, d)) = (a, c + 2, c, d)$

- ➊ Fixpoint solution (on the board)
- ➋ MOP solution (on the board)

- 1 Repetition: The Dataflow Analysis Framework
- 2 The MOP Solution
- 3 Another Analysis: Constant Propagation
- 4 Undecidability of the MOP Solution

Theorem 22.8 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Theorem 22.8 (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of **Modified Post Correspondence Problem**:

Let Γ be some alphabet, $n \in \mathbb{N}$, and $u_1, \dots, u_n, v_1, \dots, v_n \in \Gamma^+$.

Does there exist $i_1, \dots, i_m \in \{1, \dots, n\}$ with $m \geq 1$ and $i_1 = 1$ such that $u_{i_1} u_{i_2} \dots u_{i_m} = v_{i_1} v_{i_2} \dots v_{i_m}$?

(on the board)

