
Semantics and Verification of Software
Lecture 23: Dataflow Analysis VI

(MOP vs. Fixpoint Solution & Wrap-Up)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Outline

1 Repetition: The MOP Solution

2 Repetition: Constant Propagation

3 MOP vs. Fixpoint Solution

4 Further Topics in Formal Semantics

5 Upcoming Courses

6 Evaluation of the Course

Semantics and Verification of Software Summer Semester 2010 2

The MOP Solution I

Other solution method for dataflow systems
MOP = Meet Over all Paths
Analysis information for block Bl = least upper bound over all
paths leading to l

Definition (Paths)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. For every l ∈ L,
the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,
(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).

Semantics and Verification of Software Summer Semester 2010 3

The MOP Solution II

Definition (MOP solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔
{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite
=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable

Semantics and Verification of Software Summer Semester 2010 4

Undecidability of the MOP Solution

Theorem (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let Γ be some alphabet, n ∈ N, and u1, . . . , un, v1, . . . , vn ∈ Γ+.
Does there exist i1, . . . , im ∈ {1, . . . , n} with m ≥ 1 and i1 = 1 such
that ui1ui2 . . . uim = vi1vi2 . . . vim?

(on the board)

Semantics and Verification of Software Summer Semester 2010 5

Outline

1 Repetition: The MOP Solution

2 Repetition: Constant Propagation

3 MOP vs. Fixpoint Solution

4 Further Topics in Formal Semantics

5 Upcoming Courses

6 Evaluation of the Course

Semantics and Verification of Software Summer Semester 2010 6

Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,v), ι, ϕ) is given by
set of labels L := Lc,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,v) where

D := {δ | δ : Var c → Z ∪ {⊥,>}}
δ(x) = z ∈ Z: x has constant value z
δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., different possible values)

v⊆ D ×D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)

Example

Var c = {w, x, y, z},
δ1 = (⊥︸︷︷︸

w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

), δ2 = (3︸︷︷︸
w

, 1︸︷︷︸
x

, 4︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ δ1 t δ2 = (3︸︷︷︸
w

, 1︸︷︷︸
x

, >︸︷︷︸
y

, >︸︷︷︸
z

)

Semantics and Verification of Software Summer Semester 2010 7

Formalizing Constant Propagation Analysis II

Dataflow system S = (L, E, F, (D,v), ι, ϕ) (continued):
extremal value ι := δ> ∈ D where δ>(x) := > for every x ∈ Var c,
transfer functions {ϕl | l ∈ L} defined by

ϕl(δ) :=
{
δ if Bl = skip or Bl ∈ BExp
δ[x 7→ AJaKδ] if Bl = (x := a)

where

AJxKδ := δ(x)
AJzKδ := z

AJa1 op a2Kδ :=

z1 op z2 if z1, z2 ∈ Z
⊥ if z1 = ⊥ or z2 = ⊥
> otherwise

for z1 := AJa1Kδ and z2 := AJa2Kδ

Semantics and Verification of Software Summer Semester 2010 8

Outline

1 Repetition: The MOP Solution

2 Repetition: Constant Propagation

3 MOP vs. Fixpoint Solution

4 Further Topics in Formal Semantics

5 Upcoming Courses

6 Evaluation of the Course

Semantics and Verification of Software Summer Semester 2010 9

MOP vs. Fixpoint Solution I

Theorem 23.1 (MOP vs. Fixpoint Solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. Then

mop(S) v fix(ΦS)

Reminder: by Definition 21.2,

ΦS : Dn → Dn : (dl1 , . . . , dln) 7→ (d′l1 , . . . , d
′
ln)

where L = {l1, . . . , ln} and, for each 1 ≤ i ≤ n,

d′li :=
{
ι if li ∈ E⊔
{ϕl′(dl′) | (l′, li) ∈ F} otherwise

Proof.

on the board

The next example shows that both solutions can indeed be different.

Semantics and Verification of Software Summer Semester 2010 10

MOP vs. Fixpoint Solution I

Theorem 23.1 (MOP vs. Fixpoint Solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. Then

mop(S) v fix(ΦS)

Reminder: by Definition 21.2,

ΦS : Dn → Dn : (dl1 , . . . , dln) 7→ (d′l1 , . . . , d
′
ln)

where L = {l1, . . . , ln} and, for each 1 ≤ i ≤ n,

d′li :=
{
ι if li ∈ E⊔
{ϕl′(dl′) | (l′, li) ∈ F} otherwise

Proof.

on the board

The next example shows that both solutions can indeed be different.

Semantics and Verification of Software Summer Semester 2010 10

MOP vs. Fixpoint Solution I

Theorem 23.1 (MOP vs. Fixpoint Solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. Then

mop(S) v fix(ΦS)

Reminder: by Definition 21.2,

ΦS : Dn → Dn : (dl1 , . . . , dln) 7→ (d′l1 , . . . , d
′
ln)

where L = {l1, . . . , ln} and, for each 1 ≤ i ≤ n,

d′li :=
{
ι if li ∈ E⊔
{ϕl′(dl′) | (l′, li) ∈ F} otherwise

Proof.

on the board

The next example shows that both solutions can indeed be different.
Semantics and Verification of Software Summer Semester 2010 10

MOP vs. Fixpoint Solution II

Example 23.2 (Constant Propagation)

c := if [z > 0]1 then
[x := 2;]2
[y := 3;]3

else
[x := 3;]4
[y := 2;]5

[z := x+y;]6
[. . .]7

Transfer functions
(for δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a+ b)

1 Fixpoint solution:
CP1 = ι = (>,>,>)
CP2 = ϕ1(CP1) = (>,>,>)
CP3 = ϕ2(CP2) = (2,>,>)
CP4 = ϕ1(CP1) = (>,>,>)
CP5 = ϕ4(CP4) = (3,>,>)
CP6 = ϕ3(CP3) t ϕ5(CP5)

= (2, 3,>) t (3, 2,>) = (>,>,>)
CP7 = ϕ6(CP6) = (>,>,>)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](>,>,>)t

ϕ[1,4,5,6](>,>,>)
= (2, 3, 5) t (3, 2, 5)
= (>,>, 5)

Semantics and Verification of Software Summer Semester 2010 11

MOP vs. Fixpoint Solution II

Example 23.2 (Constant Propagation)

c := if [z > 0]1 then
[x := 2;]2
[y := 3;]3

else
[x := 3;]4
[y := 2;]5

[z := x+y;]6
[. . .]7

Transfer functions
(for δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a+ b)

1 Fixpoint solution:
CP1 = ι = (>,>,>)
CP2 = ϕ1(CP1) = (>,>,>)
CP3 = ϕ2(CP2) = (2,>,>)
CP4 = ϕ1(CP1) = (>,>,>)
CP5 = ϕ4(CP4) = (3,>,>)
CP6 = ϕ3(CP3) t ϕ5(CP5)

= (2, 3,>) t (3, 2,>) = (>,>,>)
CP7 = ϕ6(CP6) = (>,>,>)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](>,>,>)t

ϕ[1,4,5,6](>,>,>)
= (2, 3, 5) t (3, 2, 5)
= (>,>, 5)

Semantics and Verification of Software Summer Semester 2010 11

MOP vs. Fixpoint Solution II

Example 23.2 (Constant Propagation)

c := if [z > 0]1 then
[x := 2;]2
[y := 3;]3

else
[x := 3;]4
[y := 2;]5

[z := x+y;]6
[. . .]7

Transfer functions
(for δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a+ b)

1 Fixpoint solution:
CP1 = ι = (>,>,>)
CP2 = ϕ1(CP1) = (>,>,>)
CP3 = ϕ2(CP2) = (2,>,>)
CP4 = ϕ1(CP1) = (>,>,>)
CP5 = ϕ4(CP4) = (3,>,>)
CP6 = ϕ3(CP3) t ϕ5(CP5)

= (2, 3,>) t (3, 2,>) = (>,>,>)
CP7 = ϕ6(CP6) = (>,>,>)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](>,>,>)t

ϕ[1,4,5,6](>,>,>)
= (2, 3, 5) t (3, 2, 5)
= (>,>, 5)

Semantics and Verification of Software Summer Semester 2010 11

MOP vs. Fixpoint Solution II

Example 23.2 (Constant Propagation)

c := if [z > 0]1 then
[x := 2;]2
[y := 3;]3

else
[x := 3;]4
[y := 2;]5

[z := x+y;]6
[. . .]7

Transfer functions
(for δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a+ b)

1 Fixpoint solution:
CP1 = ι = (>,>,>)
CP2 = ϕ1(CP1) = (>,>,>)
CP3 = ϕ2(CP2) = (2,>,>)
CP4 = ϕ1(CP1) = (>,>,>)
CP5 = ϕ4(CP4) = (3,>,>)
CP6 = ϕ3(CP3) t ϕ5(CP5)

= (2, 3,>) t (3, 2,>) = (>,>,>)
CP7 = ϕ6(CP6) = (>,>,>)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](>,>,>)t

ϕ[1,4,5,6](>,>,>)
= (2, 3, 5) t (3, 2, 5)
= (>,>, 5)

Semantics and Verification of Software Summer Semester 2010 11

Distributive Transfer Functions I

A sufficient criterion for the coincidence of MOP and Fixpoint Solution
is the distributivity of the transfer functions.

Definition 23.3 (Distributivity)

Let (D,v) and (D′,v′) be complete lattices, and let F : D → D′.
F is called distributive (w.r.t. (D,v) and (D′,v′)) if, for every
d1, d2 ∈ D,

F (d1 tD d2) = F (d1) tD′ F (d2).

A dataflow system S = (L, E, F, (D,v), ι, ϕ) is called distributive
if every ϕl : D → D (l ∈ L) is so.

Semantics and Verification of Software Summer Semester 2010 12

Distributive Transfer Functions I

A sufficient criterion for the coincidence of MOP and Fixpoint Solution
is the distributivity of the transfer functions.

Definition 23.3 (Distributivity)

Let (D,v) and (D′,v′) be complete lattices, and let F : D → D′.
F is called distributive (w.r.t. (D,v) and (D′,v′)) if, for every
d1, d2 ∈ D,

F (d1 tD d2) = F (d1) tD′ F (d2).
A dataflow system S = (L, E, F, (D,v), ι, ϕ) is called distributive
if every ϕl : D → D (l ∈ L) is so.

Semantics and Verification of Software Summer Semester 2010 12

Distributive Transfer Functions II

Example 23.4
1 The Available Expressions dataflow system is distributive:

ϕl(A1 tA2) = ((A1 ∩A2) \ killAE(Bl)) ∪ genAE(Bl)
= ((A1 \ killAE(Bl)) ∪ genAE(Bl))∩

((A2 \ killAE(Bl)) ∪ genAE(Bl))
= ϕl(A1) t ϕl(A2)

2 The Live Variables dataflow system is distributive (similar)
3 The Constant Propagation dataflow system is not distributive:

(>,>,>) = ϕz:=x+y((2, 3,>) t (3, 2,>))
6= ϕz:=x+y((2, 3,>)) t ϕz:=x+y((3, 2,>))
= (>,>, 5)

Semantics and Verification of Software Summer Semester 2010 13

Distributive Transfer Functions II

Example 23.4
1 The Available Expressions dataflow system is distributive:

ϕl(A1 tA2) = ((A1 ∩A2) \ killAE(Bl)) ∪ genAE(Bl)
= ((A1 \ killAE(Bl)) ∪ genAE(Bl))∩

((A2 \ killAE(Bl)) ∪ genAE(Bl))
= ϕl(A1) t ϕl(A2)

2 The Live Variables dataflow system is distributive (similar)

3 The Constant Propagation dataflow system is not distributive:

(>,>,>) = ϕz:=x+y((2, 3,>) t (3, 2,>))
6= ϕz:=x+y((2, 3,>)) t ϕz:=x+y((3, 2,>))
= (>,>, 5)

Semantics and Verification of Software Summer Semester 2010 13

Distributive Transfer Functions II

Example 23.4
1 The Available Expressions dataflow system is distributive:

ϕl(A1 tA2) = ((A1 ∩A2) \ killAE(Bl)) ∪ genAE(Bl)
= ((A1 \ killAE(Bl)) ∪ genAE(Bl))∩

((A2 \ killAE(Bl)) ∪ genAE(Bl))
= ϕl(A1) t ϕl(A2)

2 The Live Variables dataflow system is distributive (similar)
3 The Constant Propagation dataflow system is not distributive:

(>,>,>) = ϕz:=x+y((2, 3,>) t (3, 2,>))
6= ϕz:=x+y((2, 3,>)) t ϕz:=x+y((3, 2,>))
= (>,>, 5)

Semantics and Verification of Software Summer Semester 2010 13

Coincidence of MOP and Fixpoint Solution

Theorem 23.5 (MOP vs. Fixpoint Solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a distributive dataflow system. Then

mop(S) = fix(ΦS)

Proof.

by showing that ΦS(mop(S)) = mop(S) ...
(see [Nielson/Nielson/Hankin 2005, p. 81])
... and using mop(S) v fix(ΦS) (Theorem 23.1)

Semantics and Verification of Software Summer Semester 2010 14

Coincidence of MOP and Fixpoint Solution

Theorem 23.5 (MOP vs. Fixpoint Solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a distributive dataflow system. Then

mop(S) = fix(ΦS)

Proof.

by showing that ΦS(mop(S)) = mop(S) ...
(see [Nielson/Nielson/Hankin 2005, p. 81])
... and using mop(S) v fix(ΦS) (Theorem 23.1)

Semantics and Verification of Software Summer Semester 2010 14

Outline

1 Repetition: The MOP Solution

2 Repetition: Constant Propagation

3 MOP vs. Fixpoint Solution

4 Further Topics in Formal Semantics

5 Upcoming Courses

6 Evaluation of the Course

Semantics and Verification of Software Summer Semester 2010 15

Semantics of Functional Languages I

Program = list of function definitions

Simplest setting: first-order function definitions of the form
f(x1, . . . , xn) = t

function name f
formal parameters x1, . . . , xn

term t over (base and defined) function calls and x1, . . . , xn

Operational semantics (only function calls)
call-by-value case:

t1 → z1 . . . tn → zn t[x1 7→ z1, . . . , xn 7→ zn]→ z

f(t1, . . . , tn)→ z

call-by-name case:

t[x1 7→ t1, . . . , xn 7→ tn]→ z

f(t1, . . . , tn)→ z

Semantics and Verification of Software Summer Semester 2010 16

Semantics of Functional Languages I

Program = list of function definitions
Simplest setting: first-order function definitions of the form

f(x1, . . . , xn) = t

function name f
formal parameters x1, . . . , xn

term t over (base and defined) function calls and x1, . . . , xn

Operational semantics (only function calls)
call-by-value case:

t1 → z1 . . . tn → zn t[x1 7→ z1, . . . , xn 7→ zn]→ z

f(t1, . . . , tn)→ z

call-by-name case:

t[x1 7→ t1, . . . , xn 7→ tn]→ z

f(t1, . . . , tn)→ z

Semantics and Verification of Software Summer Semester 2010 16

Semantics of Functional Languages I

Program = list of function definitions
Simplest setting: first-order function definitions of the form

f(x1, . . . , xn) = t

function name f
formal parameters x1, . . . , xn

term t over (base and defined) function calls and x1, . . . , xn

Operational semantics (only function calls)
call-by-value case:

t1 → z1 . . . tn → zn t[x1 7→ z1, . . . , xn 7→ zn]→ z

f(t1, . . . , tn)→ z

call-by-name case:

t[x1 7→ t1, . . . , xn 7→ tn]→ z

f(t1, . . . , tn)→ z

Semantics and Verification of Software Summer Semester 2010 16

Semantics of Functional Languages II

Denotational semantics
program = equation system (for functions)
induces call-by-value and call-by-name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

Extensions: higher-order types, data types, ...
see [Winskel 1996, Sct. 9] and Functional Programming course
[Giesl]

Semantics and Verification of Software Summer Semester 2010 17

Semantics of Functional Languages II

Denotational semantics
program = equation system (for functions)
induces call-by-value and call-by-name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

Extensions: higher-order types, data types, ...

see [Winskel 1996, Sct. 9] and Functional Programming course
[Giesl]

Semantics and Verification of Software Summer Semester 2010 17

Semantics of Functional Languages II

Denotational semantics
program = equation system (for functions)
induces call-by-value and call-by-name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

Extensions: higher-order types, data types, ...
see [Winskel 1996, Sct. 9] and Functional Programming course
[Giesl]

Semantics and Verification of Software Summer Semester 2010 17

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings

Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α→ P

P
α→ P ′

P +Q
α→ P ′

P
α→ P ′

P ‖ Q α→ P ′ ‖ Q
P

α→ P ′ Q
ᾱ→ Q′

P ‖ Q τ→ P ′ ‖ Q′
. . .

see course on Modelling Concurrent and Probabilistic Systems in
Summer 2009 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer Semester 2010 18

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings
Missing: aspect of interaction

Typical approach:
concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α→ P

P
α→ P ′

P +Q
α→ P ′

P
α→ P ′

P ‖ Q α→ P ′ ‖ Q
P

α→ P ′ Q
ᾱ→ Q′

P ‖ Q τ→ P ′ ‖ Q′
. . .

see course on Modelling Concurrent and Probabilistic Systems in
Summer 2009 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer Semester 2010 18

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings
Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α→ P

P
α→ P ′

P +Q
α→ P ′

P
α→ P ′

P ‖ Q α→ P ′ ‖ Q
P

α→ P ′ Q
ᾱ→ Q′

P ‖ Q τ→ P ′ ‖ Q′
. . .

see course on Modelling Concurrent and Probabilistic Systems in
Summer 2009 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer Semester 2010 18

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings
Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α→ P

P
α→ P ′

P +Q
α→ P ′

P
α→ P ′

P ‖ Q α→ P ′ ‖ Q
P

α→ P ′ Q
ᾱ→ Q′

P ‖ Q τ→ P ′ ‖ Q′
. . .

see course on Modelling Concurrent and Probabilistic Systems in
Summer 2009 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer Semester 2010 18

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings
Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...

(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α→ P

P
α→ P ′

P +Q
α→ P ′

P
α→ P ′

P ‖ Q α→ P ′ ‖ Q
P

α→ P ′ Q
ᾱ→ Q′

P ‖ Q τ→ P ′ ‖ Q′
. . .

see course on Modelling Concurrent and Probabilistic Systems in
Summer 2009 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer Semester 2010 18

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings
Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α→ P

P
α→ P ′

P +Q
α→ P ′

P
α→ P ′

P ‖ Q α→ P ′ ‖ Q
P

α→ P ′ Q
ᾱ→ Q′

P ‖ Q τ→ P ′ ‖ Q′
. . .

see course on Modelling Concurrent and Probabilistic Systems in
Summer 2009 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer Semester 2010 18

Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings
Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α→ P

P
α→ P ′

P +Q
α→ P ′

P
α→ P ′

P ‖ Q α→ P ′ ‖ Q
P

α→ P ′ Q
ᾱ→ Q′

P ‖ Q τ→ P ′ ‖ Q′
. . .

see course on Modelling Concurrent and Probabilistic Systems in
Summer 2009 [Katoen, Noll] and [Winskel 1996, Sct. 14]

Semantics and Verification of Software Summer Semester 2010 18

Outline

1 Repetition: The MOP Solution

2 Repetition: Constant Propagation

3 MOP vs. Fixpoint Solution

4 Further Topics in Formal Semantics

5 Upcoming Courses

6 Evaluation of the Course

Semantics and Verification of Software Summer Semester 2010 19

Courses Winter 2010/11

Course Advanced Model Checking [Katoen]
Practical Course Model Checking [Katoen, Sher, Yue]
Course Compiler Construction [Noll] (“Hiwi” jobs available!)

Semantics and Verification of Software Summer Semester 2010 20

Outline

1 Repetition: The MOP Solution

2 Repetition: Constant Propagation

3 MOP vs. Fixpoint Solution

4 Further Topics in Formal Semantics

5 Upcoming Courses

6 Evaluation of the Course

Semantics and Verification of Software Summer Semester 2010 21

Priv.doz. Dr.rer.nat. Thomas Noll, Semantik und Verifikation von Software (10ss-29423)

08.07.2010 EvaSys Auswertung Seite 6

Profillinie
Teilbereich: Informatik
Name der/des Priv.doz. Dr.rer.nat. Thomas Noll
Titel der
Lehrveranstaltung:
(Name der Umfrage)

Semantik und Verifikation von Software (10ss-29423) (Vorlesung)

Konzept der VorlesungKonzept der VorlesungKonzept der VorlesungKonzept der Vorlesung

Mir ist klar, wozu die Vorlesung gut ist. trifft völlig
zu

trifft nicht
zu

n=9
mw=1.3

Die Vorlesung hat eine klar erkennbare Struktur. trifft völlig
zu

trifft nicht
zu

n=9
mw=1.1

Die Vorlesung kann mit den zur Verfügung gestellten
Materialien (Skript, Lehrbuch, Handouts ...) gut
nachbereitet werden.

trifft völlig
zu

trifft nicht
zu

n=9
mw=1.3

Ich habe das nötige Vorwissen für diese Vorlesung. trifft völlig
zu

trifft nicht
zu

n=9
mw=1.7

Die ausgewählten Beispiele helfen mir, die Inhalte der
Vorlesung zu verstehen.

trifft völlig
zu

trifft nicht
zu

n=9
mw=1.4

Es werden Zusammenfassungen an sinnvollen Stellen
gemacht.

trifft völlig
zu

trifft nicht
zu

n=9
mw=1.2

Der Schwierigkeitsgrad ist ... zu schwer zu leicht
n=9
mw=2

Vermittlung und VerhaltenVermittlung und VerhaltenVermittlung und VerhaltenVermittlung und Verhalten

... kann den Stoff verständlich erklären. trifft völlig
zu

trifft nicht zu
n=9
mw=1

... geht sorgfältig auf Verständnisfragen ein. trifft völlig
zu

trifft nicht zu
n=9
mw=1

... berücksichtigt unterschiedliche
 Kenntnisstände der Studierenden.

trifft völlig
zu

trifft nicht zu
n=7
mw=1.1

... schafft es, mich für den Vorlesungsstoff zu
 begeistern.

trifft völlig
zu

trifft nicht zu
n=9
mw=1.7

... spricht angemessen laut und deutlich. trifft völlig
zu

trifft nicht zu
n=9
mw=1

... ist offen für Verbesserungsvorschläge. trifft völlig
zu

trifft nicht zu
n=5
mw=1

Priv.doz. Dr.rer.nat. Thomas Noll, Semantik und Verifikation von Software (10ss-29423)

08.07.2010 EvaSys Auswertung Seite 7

... lässt sich außerhalb der Vorlesung
 gut ansprechen, z.B. in Sprechstunden oder
 per Email.

trifft völlig
zu

trifft nicht zu
n=6
mw=1

Der Einsatz von Hilfsmitteln wie Wandtafel, Overhead,
Beamer und Demonstrationen ist gut.

trifft völlig
zu

trifft nicht zu
n=9
mw=1.2

Schrift und Zeichnungen in der Vorlesung sind gut lesbar. trifft völlig
zu

trifft nicht zu
n=9
mw=1.2

Tafelanschrieb / Folien sind übersichtlich. trifft völlig
zu

trifft nicht zu
n=9
mw=1.7

Das Tempo ist ... zu hoch zu niedrig
n=9
mw=2.2

Priv.doz. Dr.rer.nat. Thomas Noll, Semantik und Verifikation von Software (10ss-29422)

05.07.2010 EvaSys Auswertung Seite 6

Profillinie
Teilbereich: Informatik
Name der/des Priv.doz. Dr.rer.nat. Thomas Noll
Titel der
Lehrveranstaltung:
(Name der Umfrage)

Semantik und Verifikation von Software (10ss-29422) (Übung)

Konzept der ÜbungKonzept der ÜbungKonzept der ÜbungKonzept der Übung

Vorlesung und Übung sind inhaltlichinhaltlichinhaltlichinhaltlich gut aufeinander
abgestimmt.

trifft völlig
zu

trifft gar
nicht zu

n=7
mw=2

Vorlesung und Übung sind zeitlichzeitlichzeitlichzeitlich gut aufeinander
abgestimmt.

trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.7

Mir ist klar, wozu die Übung gut ist. trifft völlig
zu

trifft gar
nicht zu

n=6
mw=1.7

Der Ablauf der Übung ist gut strukturiert. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.9

Die ausgewählten Übungsaufgaben helfen mir, die Inhalte
der Vorlesung zu verstehen.

trifft völlig
zu

trifft gar
nicht zu

n=5
mw=2

Die Übungsaufgaben sind verständlich gestellt. trifft völlig
zu

trifft gar
nicht zu

n=6
mw=2.5

Die Übungsaufgaben haben einen angemessenen
Umfang.

trifft völlig
zu

trifft gar
nicht zu

n=6
mw=2.2

Die vorgestellten Lösungswege sind nachvollziehbar. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.7

Falls Sie Ihre Lösung abgeben konnten: Wurde diese
angemessen korrigiert?

trifft völlig
zu

trifft gar
nicht zu

n=5
mw=1

Die Übungsaufgaben sind ... zu schwer zu leicht
n=5
mw=1.6

Vermittlung und VerhaltenVermittlung und VerhaltenVermittlung und VerhaltenVermittlung und Verhalten

... kann den Stoff verständlich erklären. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.7

... geht sorgfältig auf Verständnisfragen ein. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.6

... berücksichtigt unterschiedliche
 Kenntnisstände der Studierenden. (*)

trifft völlig
zu

trifft gar
nicht zu

Priv.doz. Dr.rer.nat. Thomas Noll, Semantik und Verifikation von Software (10ss-29422)

05.07.2010 EvaSys Auswertung Seite 7

... spricht angemessen laut und deutlich. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.3

... ist offen für Verbesserungsvorschläge. (*) trifft völlig
zu

trifft gar
nicht zu

... ist gut vorbereitet. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.7

... lässt sich außerhalb der Übung gut
 ansprechen, z.B. in Sprechstunden oder
 per Email. (*)

trifft völlig
zu

trifft gar
nicht zu

Der Einsatz von Hilfsmitteln wie Wandtafel, Overhead,
Beamer und Demonstrationen ist gut.

trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.9

Schrift und Zeichnungen in der Übung sind gut lesbar. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=2.4

Tafelanschrieb / Folien sind übersichtlich. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=2.3

Das Tempo ist ... zu hoch zu niedrig
n=7
mw=1.9

(*) Hinweis: Wenn die Anzahl der Antworten auf eine Frage zu gering ist, wird für die Frage keine Auswertung angezeigt.

	Repetition: The MOP Solution
	Repetition: Constant Propagation
	MOP vs. Fixpoint Solution
	Further Topics in Formal Semantics
	Upcoming Courses
	Evaluation of the Course

