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The MOP Solution I

Other solution method for dataflow systems
MOP = Meet Over all Paths
Analysis information for block Bl = least upper bound over all
paths leading to l

Definition (Paths)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. For every l ∈ L,
the set of paths up to l is given by

Path(l) := {[l1, . . . , lk−1] | k ≥ 1, l1 ∈ E,
(li, li+1) ∈ F for every 1 ≤ i ≤ k, lk = l}.

For a path p = [l1, . . . , lk−1] ∈ Path(l), we define the transfer function
ϕp : D → D by

ϕp := ϕlk−1
◦ . . . ◦ ϕl1 ◦ idD

(so that ϕ[] = idD).
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The MOP Solution II

Definition (MOP solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system where
L = {l1, . . . , ln}. The MOP solution for S is determined by

mop(S) := (mop(l1), . . . ,mop(ln)) ∈ Dn

where, for every l ∈ L,

mop(l) :=
⊔
{ϕp(ι) | p ∈ Path(l)}.

Remark:

Path(l) is generally infinite
=⇒ not clear how to compute mop(l)

In fact: MOP solution generally undecidable
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Undecidability of the MOP Solution

Theorem (Undecidability of MOP solution)

The MOP solution for Constant Propagation is undecidable.

Proof.

Based on undecidability of Modified Post Correspondence Problem:
Let Γ be some alphabet, n ∈ N, and u1, . . . , un, v1, . . . , vn ∈ Γ+.
Does there exist i1, . . . , im ∈ {1, . . . , n} with m ≥ 1 and i1 = 1 such
that ui1ui2 . . . uim = vi1vi2 . . . vim?

(on the board)
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Formalizing Constant Propagation Analysis I

The dataflow system S = (L, E, F, (D,v), ι, ϕ) is given by
set of labels L := Lc,
extremal labels E := {init(c)} (forward problem),
flow relation F := flow(c) (forward problem),
complete lattice (D,v) where

D := {δ | δ : Var c → Z ∪ {⊥,>}}
δ(x) = z ∈ Z: x has constant value z
δ(x) = ⊥: x undefined
δ(x) = >: x overdefined (i.e., different possible values)

v⊆ D ×D defined by pointwise extension of ⊥ v z v >
(for every z ∈ Z)

Example

Var c = {w, x, y, z},
δ1 = ( ⊥︸︷︷︸

w

, 1︸︷︷︸
x

, 2︸︷︷︸
y

, >︸︷︷︸
z

), δ2 = ( 3︸︷︷︸
w

, 1︸︷︷︸
x

, 4︸︷︷︸
y

, >︸︷︷︸
z

)

=⇒ δ1 t δ2 = ( 3︸︷︷︸
w

, 1︸︷︷︸
x

, >︸︷︷︸
y

, >︸︷︷︸
z

)

Semantics and Verification of Software Summer Semester 2010 7



Formalizing Constant Propagation Analysis II

Dataflow system S = (L, E, F, (D,v), ι, ϕ) (continued):
extremal value ι := δ> ∈ D where δ>(x) := > for every x ∈ Var c,
transfer functions {ϕl | l ∈ L} defined by

ϕl(δ) :=
{
δ if Bl = skip or Bl ∈ BExp
δ[x 7→ AJaKδ] if Bl = (x := a)

where

AJxKδ := δ(x)
AJzKδ := z

AJa1 op a2Kδ :=

z1 op z2 if z1, z2 ∈ Z
⊥ if z1 = ⊥ or z2 = ⊥
> otherwise

for z1 := AJa1Kδ and z2 := AJa2Kδ
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MOP vs. Fixpoint Solution I

Theorem 23.1 (MOP vs. Fixpoint Solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a dataflow system. Then

mop(S) v fix(ΦS)

Reminder: by Definition 21.2,

ΦS : Dn → Dn : (dl1 , . . . , dln) 7→ (d′l1 , . . . , d
′
ln)

where L = {l1, . . . , ln} and, for each 1 ≤ i ≤ n,

d′li :=
{
ι if li ∈ E⊔
{ϕl′(dl′) | (l′, li) ∈ F} otherwise

Proof.

on the board

The next example shows that both solutions can indeed be different.
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MOP vs. Fixpoint Solution II

Example 23.2 (Constant Propagation)

c := if [z > 0]1 then
[x := 2;]2
[y := 3;]3

else
[x := 3;]4
[y := 2;]5

[z := x+y;]6
[. . .]7

Transfer functions
(for δ = (δ(x), δ(y), δ(z)) ∈ D):
ϕ1((a, b, c)) = (a, b, c)
ϕ2((a, b, c)) = (2, b, c)
ϕ3((a, b, c)) = (a, 3, c)
ϕ4((a, b, c)) = (3, b, c)
ϕ5((a, b, c)) = (a, 2, c)
ϕ6((a, b, c)) = (a, b, a+ b)

1 Fixpoint solution:
CP1 = ι = (>,>,>)
CP2 = ϕ1(CP1) = (>,>,>)
CP3 = ϕ2(CP2) = (2,>,>)
CP4 = ϕ1(CP1) = (>,>,>)
CP5 = ϕ4(CP4) = (3,>,>)
CP6 = ϕ3(CP3) t ϕ5(CP5)

= (2, 3,>) t (3, 2,>) = (>,>,>)
CP7 = ϕ6(CP6) = (>,>,>)

2 MOP solution:
mop(7) = ϕ[1,2,3,6](>,>,>)t

ϕ[1,4,5,6](>,>,>)
= (2, 3, 5) t (3, 2, 5)
= (>,>, 5)
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Distributive Transfer Functions I

A sufficient criterion for the coincidence of MOP and Fixpoint Solution
is the distributivity of the transfer functions.

Definition 23.3 (Distributivity)

Let (D,v) and (D′,v′) be complete lattices, and let F : D → D′.
F is called distributive (w.r.t. (D,v) and (D′,v′)) if, for every
d1, d2 ∈ D,

F (d1 tD d2) = F (d1) tD′ F (d2).

A dataflow system S = (L, E, F, (D,v), ι, ϕ) is called distributive
if every ϕl : D → D (l ∈ L) is so.
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Distributive Transfer Functions II

Example 23.4
1 The Available Expressions dataflow system is distributive:

ϕl(A1 tA2) = ((A1 ∩A2) \ killAE(Bl)) ∪ genAE(Bl)
= ((A1 \ killAE(Bl)) ∪ genAE(Bl))∩

((A2 \ killAE(Bl)) ∪ genAE(Bl))
= ϕl(A1) t ϕl(A2)

2 The Live Variables dataflow system is distributive (similar)
3 The Constant Propagation dataflow system is not distributive:

(>,>,>) = ϕz:=x+y((2, 3,>) t (3, 2,>))
6= ϕz:=x+y((2, 3,>)) t ϕz:=x+y((3, 2,>))
= (>,>, 5)
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Coincidence of MOP and Fixpoint Solution

Theorem 23.5 (MOP vs. Fixpoint Solution)

Let S = (L, E, F, (D,v), ι, ϕ) be a distributive dataflow system. Then

mop(S) = fix(ΦS)

Proof.

by showing that ΦS(mop(S)) = mop(S) ...
(see [Nielson/Nielson/Hankin 2005, p. 81])
... and using mop(S) v fix(ΦS) (Theorem 23.1)
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Semantics of Functional Languages I

Program = list of function definitions

Simplest setting: first-order function definitions of the form
f(x1, . . . , xn) = t

function name f
formal parameters x1, . . . , xn

term t over (base and defined) function calls and x1, . . . , xn

Operational semantics (only function calls)
call-by-value case:

t1 → z1 . . . tn → zn t[x1 7→ z1, . . . , xn 7→ zn]→ z

f(t1, . . . , tn)→ z

call-by-name case:

t[x1 7→ t1, . . . , xn 7→ tn]→ z

f(t1, . . . , tn)→ z
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Semantics of Functional Languages II

Denotational semantics
program = equation system (for functions)
induces call-by-value and call-by-name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

Extensions: higher-order types, data types, ...
see [Winskel 1996, Sct. 9] and Functional Programming course
[Giesl]
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Semantics of Concurrent Languages

Problem: “classical” view of sequential systems

Program : Input→ Output

not adequate for concurrent settings

Missing: aspect of interaction
Typical approach:

concurrency modelled by interleaving
interaction modelled by (explicit) communication

Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α→ P

P
α→ P ′

P +Q
α→ P ′

P
α→ P ′

P ‖ Q α→ P ′ ‖ Q
P

α→ P ′ Q
ᾱ→ Q′

P ‖ Q τ→ P ′ ‖ Q′
. . .

see course on Modelling Concurrent and Probabilistic Systems in
Summer 2009 [Katoen, Noll] and [Winskel 1996, Sct. 14]
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Example: Milner’s Calculus of Communicating Systems (CCS)

Syntax: P ::= 0 | α.P | P1 + P2 | P1 ‖ P2 | ...
(Operational) Semantics: labelled transition systems defined by
transition rules of the form

α.P
α→ P

P
α→ P ′

P +Q
α→ P ′

P
α→ P ′

P ‖ Q α→ P ′ ‖ Q
P

α→ P ′ Q
ᾱ→ Q′

P ‖ Q τ→ P ′ ‖ Q′
. . .

see course on Modelling Concurrent and Probabilistic Systems in
Summer 2009 [Katoen, Noll] and [Winskel 1996, Sct. 14]
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Outline

1 Repetition: The MOP Solution

2 Repetition: Constant Propagation

3 MOP vs. Fixpoint Solution

4 Further Topics in Formal Semantics

5 Upcoming Courses

6 Evaluation of the Course
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Courses Winter 2010/11

Course Advanced Model Checking [Katoen]
Practical Course Model Checking [Katoen, Sher, Yue]
Course Compiler Construction [Noll] (“Hiwi” jobs available!)
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Priv.doz. Dr.rer.nat. Thomas Noll, Semantik und Verifikation von Software (10ss-29423)

08.07.2010 EvaSys Auswertung Seite 6

Profillinie
Teilbereich: Informatik
Name der/des Priv.doz. Dr.rer.nat. Thomas Noll
Titel der
Lehrveranstaltung:
(Name der Umfrage)

Semantik und Verifikation von Software (10ss-29423) (Vorlesung)

Konzept der VorlesungKonzept der VorlesungKonzept der VorlesungKonzept der Vorlesung

Mir ist klar, wozu die Vorlesung gut ist. trifft völlig
zu

trifft nicht
zu

n=9
mw=1.3

Die Vorlesung hat eine klar erkennbare Struktur. trifft völlig
zu

trifft nicht
zu

n=9
mw=1.1

Die Vorlesung kann mit den zur Verfügung gestellten
Materialien (Skript, Lehrbuch, Handouts ...) gut
nachbereitet werden.

trifft völlig
zu

trifft nicht
zu

n=9
mw=1.3

Ich habe das nötige Vorwissen für diese Vorlesung. trifft völlig
zu

trifft nicht
zu

n=9
mw=1.7

Die ausgewählten Beispiele helfen mir, die Inhalte der
Vorlesung zu verstehen.

trifft völlig
zu

trifft nicht
zu

n=9
mw=1.4

Es werden Zusammenfassungen an sinnvollen Stellen
gemacht.

trifft völlig
zu

trifft nicht
zu

n=9
mw=1.2

Der Schwierigkeitsgrad ist ... zu schwer zu leicht
n=9
mw=2

Vermittlung und VerhaltenVermittlung und VerhaltenVermittlung und VerhaltenVermittlung und Verhalten

... kann den Stoff verständlich erklären. trifft völlig
zu

trifft nicht zu
n=9
mw=1

... geht sorgfältig auf Verständnisfragen ein. trifft völlig
zu

trifft nicht zu
n=9
mw=1

... berücksichtigt unterschiedliche 
    Kenntnisstände der Studierenden.

trifft völlig
zu

trifft nicht zu
n=7
mw=1.1

... schafft es, mich für den Vorlesungsstoff zu
    begeistern.

trifft völlig
zu

trifft nicht zu
n=9
mw=1.7

... spricht angemessen laut und deutlich. trifft völlig
zu

trifft nicht zu
n=9
mw=1

... ist offen für Verbesserungsvorschläge. trifft völlig
zu

trifft nicht zu
n=5
mw=1
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... lässt sich außerhalb der Vorlesung
    gut ansprechen, z.B. in Sprechstunden oder 
    per Email.

trifft völlig
zu

trifft nicht zu
n=6
mw=1

Der Einsatz von Hilfsmitteln wie Wandtafel, Overhead,
Beamer und Demonstrationen ist gut.

trifft völlig
zu

trifft nicht zu
n=9
mw=1.2

Schrift und Zeichnungen in der Vorlesung sind gut lesbar. trifft völlig
zu

trifft nicht zu
n=9
mw=1.2

Tafelanschrieb / Folien sind übersichtlich. trifft völlig
zu

trifft nicht zu
n=9
mw=1.7

Das Tempo ist ... zu hoch zu niedrig
n=9
mw=2.2



Priv.doz. Dr.rer.nat. Thomas Noll, Semantik und Verifikation von Software (10ss-29422)

05.07.2010 EvaSys Auswertung Seite 6

Profillinie
Teilbereich: Informatik
Name der/des Priv.doz. Dr.rer.nat. Thomas Noll
Titel der
Lehrveranstaltung:
(Name der Umfrage)

Semantik und Verifikation von Software (10ss-29422) (Übung)

Konzept der ÜbungKonzept der ÜbungKonzept der ÜbungKonzept der Übung

Vorlesung und Übung sind inhaltlichinhaltlichinhaltlichinhaltlich gut aufeinander
abgestimmt.

trifft völlig
zu

trifft gar
nicht zu

n=7
mw=2

Vorlesung und Übung sind zeitlichzeitlichzeitlichzeitlich gut aufeinander
abgestimmt.

trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.7

Mir ist klar, wozu die Übung gut ist. trifft völlig
zu

trifft gar
nicht zu

n=6
mw=1.7

Der Ablauf der Übung ist gut strukturiert. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.9

Die ausgewählten Übungsaufgaben helfen mir, die Inhalte
der Vorlesung zu verstehen.

trifft völlig
zu

trifft gar
nicht zu

n=5
mw=2

Die Übungsaufgaben sind verständlich gestellt. trifft völlig
zu

trifft gar
nicht zu

n=6
mw=2.5

Die Übungsaufgaben haben einen angemessenen
Umfang.

trifft völlig
zu

trifft gar
nicht zu

n=6
mw=2.2

Die vorgestellten Lösungswege sind nachvollziehbar. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.7

Falls Sie Ihre Lösung abgeben konnten: Wurde diese
angemessen korrigiert?

trifft völlig
zu

trifft gar
nicht zu

n=5
mw=1

Die Übungsaufgaben sind ... zu schwer zu leicht
n=5
mw=1.6

Vermittlung und VerhaltenVermittlung und VerhaltenVermittlung und VerhaltenVermittlung und Verhalten

... kann den Stoff verständlich erklären. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.7

... geht sorgfältig auf Verständnisfragen ein. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.6

... berücksichtigt unterschiedliche
    Kenntnisstände der Studierenden. (*)

trifft völlig
zu

trifft gar
nicht zu
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... spricht angemessen laut und deutlich. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.3

... ist offen für Verbesserungsvorschläge. (*) trifft völlig
zu

trifft gar
nicht zu

... ist gut vorbereitet. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.7

... lässt sich außerhalb der Übung gut
    ansprechen, z.B. in Sprechstunden oder
    per Email. (*)

trifft völlig
zu

trifft gar
nicht zu

Der Einsatz von Hilfsmitteln wie Wandtafel, Overhead,
Beamer und Demonstrationen ist gut.

trifft völlig
zu

trifft gar
nicht zu

n=7
mw=1.9

Schrift und Zeichnungen in der Übung sind gut lesbar. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=2.4

Tafelanschrieb / Folien sind übersichtlich. trifft völlig
zu

trifft gar
nicht zu

n=7
mw=2.3

Das Tempo ist ... zu hoch zu niedrig
n=7
mw=1.9

(*) Hinweis: Wenn die Anzahl der Antworten auf eine Frage zu gering ist, wird für die Frage keine Auswertung angezeigt.
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