Semantics and Verification of Software

Lecture 2: Operational Semantics of WHILE 1
(Evaluation of Expressions)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Repetition: Syntax of WHILE

Rm Semantics and Verification of Software Summer Semester 2010

Syntactic Categories

WHILE: simple imperative programming language without procedures
or advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers z={0,1,—-1,...} =z
Truth values B = {true, false} ¢
Variables Var = {x,y,...} =
Arithmetic expressions AEzp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) ¢

m' Semantics and Verification of Software Summer Semester 2010

Syntax of WHILE Programs

Definition (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following
context-free grammar:

a:=z|x|ar+ag | ai-as | ar*az € AExp
b=t ‘ a1=ay ‘ a1>a9 | —b ‘ b1 N by ‘ b1 V by € BExp
cu=skip|x :=a|cp;co | if b then ¢ else ¢ | while b do ¢ € Cmd

v

Remarks: we assume that

o the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)

@ the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

m Semantics and Verification of Software Summer Semester 2010

© Operational Semantics of WHILE

Rm Semantics and Verification of Software Summer Semester 2010

Operational Semantics of WHILE

o Idea: define meaning of programs by specifying its behaviour
being executed on an (abstract) machine

@ Here: evaluation/execution relation for program fragments
(expressions, statements)

@ Approach based on Structural Operational Semantics (SOS)

G.D. Plotkin: A structural approach to operational
semantics, DAIMI FN-19, Computer Science
Department, Aarhus University, 1981

o Employs derivation rules of the form

Premise(s)
Name——F—
Conclusion

e meaning: if every premise is fulfilled, then conclusion can be drawn
e a rule with no premises is called an axiom

@ Derivation rules can be composed to form derivation trees with
axioms as leafs (formal definition later)

Rm Semantics and Verification of Software Summer Semester 2010

© Evaluation of Arithmetic Expressions

Rm Semantics and Verification of Software Summer Semester 2010

Program States

@ Meaning of expression = value (in the usual sense)

@ Depends on the values of the variables in the expression

Definition 2.1 (Program state)

A (program) state is an element of the set
Y:={o|o: Var — Z},

called the state space.

Thus o(z) denotes the value of x € Var in state o € X.

m' Semantics and Verification of Software Summer Semester 2010

Evaluation of Arithmetic Expressions I

Remember: a ::=z |z | aj+ag | a1-as | ay*ag € AExp

Definition 2.2 (Evaluation relation for arithmetic expressions)

If a € AEzp and o € X, then (a, o) is called a configuration.

Expression a evaluates to z € Z in state o (notation: (a,o) — z) if this
relationship is derivable by means of the following rules:

Axioms: o) >z 50) = o)

(a1,0) — z1 (ag,0) — 23

Rules: where z := 21 + 29

ay+ag,0) — 2

(a1,0) — z1 (ag,0) — 23
where z := 21 — 29

(a1,0) — z1 (ag,0) — 23
where z := 21 * 29

(
)
(a1-ag,0) — z
)
(

ai*ag, o) — z

m' Semantics and Verification of Software Summer Semester 2010

Evaluation of Arithmetic Expressions 11

Example 2.3
a= (x+3)*(y-2), o(x) =3, o(y) =9

(,0) =3 (3,0) =3 (y,0) =9 (2,0) =2
(x+3,0) — 6 (y=2,0) = 7
((x+3)*(y-2),0) — 42

(a1,0) — 21 (az,0) — 22
where z := z1%29 \
(ar*ag,0) — z (ar+ag,0) — z

(a1,0) — z1 (ag,0) — 2o

Here: structure of derivation tree = structure of program fragment
(generally not true)

m Semantics and Verification of Software Summer Semester 2010 10

Free Variables

First formal result: value of an expression only depends on valuation of
variables which occur (freely) in the expression

Definition 2.4 (Free variables)

The set of free variables of an expression is given by the function
FV : AEzp — 2Vor

where
FV(CL1+CL2) = FV(CLl) U FV(CLQ)

=0
FV(z) = {z} FV(ay-ag) := FV(a1) U FV(ag)
FV(ay*ag) := FV(a1) U FV(ag)

Result will be shown by structural induction on the expression

m' Semantics and Verification of Software Summer Semester 2010

@ Excursus: Proof by Structural Induction

Rm Semantics and Verification of Software Summer Semester 2010

Excursus: Proof by Structural Induction I

Proof principle

Given: an inductive set, i.e., a set S
@ which contains certain atomic elements and
@ which is closed under certain operations
To show: property P(s) applies to every s € S
Proof: we verify:

Induction base: P(s) holds for every atomic element s

Induction hypothesis: assume that P(s;), P(s2) etc.

Induction step: then also P(f(s1,...,ss)) holds for every
operation f of arity n

Semantics and Verification of Software Summer Semester 2010 13

Excursus: Proof by Structural Induction II

Application: natural numbers (“complete induction”)
Definition: N is the least set which

@ contains 0 and
o contains n + 1 whenever n € N

Induction base: P(0) holds
Induction hypothesis: P(n) holds
Induction step: P(n + 1) holds

m' Semantics and Verification of Software Summer Semester 2010

Complete-Induction Example

Example 2.5
We prove that P(n) : Y & ;i = % holds for every n € N.

=1
P(0) holds: Y9_;i=0=2G1

e P(n): Z?:ll = n(n2+1)

Show P(n+1): Sitli= " i+ (n+1)
71/(71/2—"-1) + (n+ 1)
_ n(n+l) 2(n+1)
— 2 + 2
_ (n42)(n+1)
(n+l)2((n+l)+1)

2

v

m Semantics and Verification of Software Summer Semester 2010

Excursus: Proof by Structural Induction III

Application: arithmetic expressions (Def. 1.2)
Definition: AFEzp is the least set which
@ contains all integers z € Z and all variables z € Var
and
@ contains aj+as, a;—as and a;*as whenever
ay,as € AExp
Induction base: P(z) and P(zx) holds (for every z € Z and x € Var)
Induction hypothesis: P(a;) and P(ag) holds
Induction step: P(aj+ag), P(ai-az) and P(aj*az) holds

m Semantics and Verification of Software Summer Semester 2010

Free Variables 11

Let a € AEzp and 0,0’ € X such that o(z) = o' (x) for every
x € FV(a). Then, for every z € Z,

(a,0) = z < (a,0) — 2.

by structural induction on a (on the board)

Semantics and Verification of Software Summer Semester 2010 17

© Evaluation of Boolean Expressions

Rm Semantics and Verification of Software Summer Semester 2010

Evaluation of Boolean Expressions I

Remember: b::=1 | aij=as | a1>as | =b | by Abs | b1 V by € BExp

Definition 2.7 (Evaluation relation for Boolean expressions)

For b € BExp, o0 € X, and t € B, the evaluation relation (b, o) — t is defined
by the following rules:
(t,o) =t
(a1,0) — z (a2,0) = 2 la1,0) = 21 {az,0) = 22 4,
(a1=ag,0) — true (a1=ag,0) — false ! 2
<a1,0'> — 21 <a2,0'> — Z9 lf G > <(L1,0> — 21 <(L2,0’> — Z9 lf % S -
(a1>az,0) — true (a1>ag,0) — false
(b, o) — false (b,0) — true
(—b, o) — true (—b,0) — false
(b1,0) — true (be,0) — true (b1,0) — true (be, o) — false
(b1 A bg,0) — true (b1 A ba, o) — false
(b1,0) — false (b2, o) — true (b1,0) — false (bs,0) — false
(b1 A 'bg, o) — false (b1 A be, o) — false
(Vv analogously)

m Semantics and Verification of Software Summer Semester 2010

Evaluation of Boolean Expressions II

Remarks:

@ Binary Boolean operators A and V are interpreted as strict, i.e.,
always evaluate both arguments.

Important in situations like
while p <> nil and p~.key < val do ...!

(see next slides for alternatives)
e FV : BExp — 2V can be defined in analogy to Def. 2.4.

o Lemma 2.6 holds analogously for Boolean expressions, i.e., the
value of b € BEzp does not depend on variables in Var \ FV (b).

m' Semantics and Verification of Software Summer Semester 2010

Evaluation of Boolean Expressions II1

Definition 2.8 (Sequential evaluation of Boolean expressions)

For b € BExp, o € 3, and t € B, the sequential evaluation relation
(b,0) — t is defined by the following rules:

(b1,0) — false (b1,0

) — true (be,0) >t
<b1/\b2,0‘> — false <b1/\b2,0‘> — 1
(b1,0) — true (b1,0) — false (b, >
<b1 vV b2,0'> — true (bl V bs, >

m Semantics and Verification of Software Summer Semester 2010

Evaluation of Boolean Expressions IV

Definition 2.9 (Parallel evaluation of Boolean expressions)

For b € BExp, o € 3, and t € B, the parallel evaluation relation
(b,0) — t is defined by the following rules:

(b1,0) — false (b2, 0) — false
(b1 A by, o) — false (b1 A ba,0) — false

(b1,0) — true (be, o) — true
<b1 A b2,0'> — true

(b1,0) — true (b2, 0) — true
(b1 V ba,0) — true (b1 V ba,0) — true

(b1,0) — false (be, o) — false
<b1 V b2,0‘> — false

m' Semantics and Verification of Software Summer Semester 2010

	Repetition: Syntax of WHILE
	Operational Semantics of WHILE
	Evaluation of Arithmetic Expressions
	Excursus: Proof by Structural Induction
	Evaluation of Boolean Expressions

