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Execution of Statements

Remember:
cu=skip | x :=a|c1;co | if b then ¢ else ¢y | while b do ¢ € Cmd

Definition (Execution relation for statements)

For ¢ € Cmd and 0,0’ € ¥, the execution relation (c,0) — o' is defined
by the following rules:

(skip) ————— (o) —— 20 7
(skip,0) — 0o (x :=a,0) — o[z > 2]
(c1,0) = 0 {ca,0") — " (b,0) — true (c1,0) — o’
(seq) (if-t) =
(c1;¢0,0) — a” (if b then c; else cy,0) — o’
. (b,0) — false (co,0) — o’ whet) (b,o) — false
11- wh-

(if b then ¢; else c2,0) — o’ (while bdo ¢,0) — 0

(b,0) — true (c,0) — ¢’ (while b do ¢,0’) — o”
(wh-t)

(while b do ¢,0) — o”
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Determinism of Execution Relation 1

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever

c € Omd and o,0',0" € ¥ such that (c,0) — ¢’ and (¢,c) — ", then
/ /"

o =do".

o How to prove this theorem?
o Idea:

@ use induction on the syntactic structure of ¢
e employ corresponding result for expressions (Lemma 3.5)
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Determinism of Execution Relation I1

@ But: proof of Theorem 3.4 fails!

@ Problematic case:
¢ =while b do ¢y where (b, o) — true
e Here (c,0) — o’ and (c¢,0) — 0" require 01,09 € ¥ such that

(b,o) — true {(c,0) — o1 {¢c,01) — 0’

(wh-t) (o) = o

and
(b,o) — true {(cp,0) — 09 {(c,09) — 0"

(wh-t) (c.0) = o

@ g proper substatement of ¢
=— induction hypothesis yields o1 = o9

@ c¢ not proper substatement of ¢ = conclusion ¢’ = ¢” invalid!
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Determinism of Execution Relation III

Induction on derivation trees of execution relation

Induction base: P ( ) holds for every o € ¥, and P(s) holds for

(skip,0) — o
every derivation tree s for an arithmetic or Boolean expression.

Induction hypothesis: P(s1), P(s2) und P(s3) holds.
Induction step: it also holds that

e P ()

(seq): P 51 %2

(c1;¢0,0) — a”

(if-t): P( oL o2 )

(if b then c1 else cz,0) — o’
(if-f): analogously

(wh-t): P( LR )
' (while b do ¢,0) — o”

h-f): P 3
(wh-£) ((while b do ¢, o) —>O‘)
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Determinism of Execution Relation IV

Proof (Theorem 3.4).

To show:
<C,O’> N O'/,<C,O'> Lo — o ="

(by structural induction on derivation trees; on the board) O
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© Functional of the Operational Semantics
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Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.4) justifies the
following definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,
O[] : Cmd — (£ --» ¥),
assigns to every statement ¢ € C'md a partial state transformation

Olc] : ¥ --» X, which is defined as follows:

O[co := o' if {¢,0) — o' for some o/ € ¥
9= Yundefined otherwise

Remark: O[c]o can indeed be undefined
(consider e.g. ¢ = while true do skip; see Corollary 3.3)
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Equivalence of Statements

Definition 4.2 (Operational equivalence)

Two statements c1,ce € Cmd are called (operationally) equivalent
(notation: ¢1 ~ cg) if

D[[Cl]] = D[[CQ]].

Thus:
0 ¢ ~ cg iff Ofcr]o = Ofeg]o for every o € &

o In particular, Ofc;]o is undefined iff Ofcz]o is undefined
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