Semantics and Verification of Software

Lecture 4: Operational Semantics of WHILE III
(Properties of Execution Relation)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Repetition: Execution of Statements

Rm Semantics and Verification of Software Summer Semester 2010

Execution of Statements

Remember:
cu=skip | x :=a|c1;co | if b then ¢ else ¢y | while b do ¢ € Cmd

Definition (Execution relation for statements)

For ¢ € Cmd and 0,0’ € ¥, the execution relation (c,0) — o' is defined
by the following rules:

(skip) ————— (o) —— 20 7
(skip,0) — 0o (x :=a,0) — o[z > 2]
(c1,0) = 0 {ca,0") — " (b,0) — true (c1,0) — o’
(seq) (if-t) =
(c1;¢0,0) — a” (if b then c; else cy,0) — o’
. (b,0) — false (co,0) — o’ whet) (b,o) — false
11- wh-

(if b then ¢; else c2,0) — o’ (while bdo ¢,0) — 0

(b,0) — true (c,0) — ¢’ (while b do ¢,0’) — o”
(wh-t)

(while b do ¢,0) — o”

m' Semantics and Verification of Software Summer Semester 2010

Determinism of Execution Relation 1

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever

c € Omd and o,0',0" € ¥ such that (c,0) — ¢’ and (¢,c) — ", then
/ /"

o =do".

o How to prove this theorem?
o Idea:

@ use induction on the syntactic structure of ¢
e employ corresponding result for expressions (Lemma 3.5)

m' Semantics and Verification of Software Summer Semester 2010

Determinism of Execution Relation I1

@ But: proof of Theorem 3.4 fails!

@ Problematic case:
¢ =while b do ¢y where (b, o) — true
e Here (c,0) — o’ and (c¢,0) — 0" require 01,09 € ¥ such that

(b,o) — true {(c,0) — o1 {¢c,01) — 0’

(wh-t) (o) = o

and
(b,o) — true {(cp,0) — 09 {(c,09) — 0"

(wh-t) (c.0) = o

@ g proper substatement of ¢
=— induction hypothesis yields o1 = o9

@ c¢ not proper substatement of ¢ = conclusion ¢’ = ¢” invalid!

Rm Semantics and Verification of Software Summer Semester 2010

Determinism of Execution Relation III

Induction on derivation trees of execution relation

Induction base: P () holds for every o € ¥, and P(s) holds for

(skip,0) — o
every derivation tree s for an arithmetic or Boolean expression.

Induction hypothesis: P(s1), P(s2) und P(s3) holds.
Induction step: it also holds that

e P ()

(seq): P 51 %2

(c1;¢0,0) — a”

(if-t): P(oL o2)

(if b then c1 else cz,0) — o’
(if-f): analogously

(wh-t): P(LR)
' (while b do ¢,0) — o”

h-f): P 3
(wh-£) ((while b do ¢, o) —>O‘)

m' Semantics and Verification of Software Summer Semester 2010

Determinism of Execution Relation IV

Proof (Theorem 3.4).

To show:
<C,O’> N O'/,<C,O'> Lo — o ="

(by structural induction on derivation trees; on the board) O

m' Semantics and Verification of Software Summer Semester 2010

© Functional of the Operational Semantics

Rm Semantics and Verification of Software Summer Semester 2010

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.4) justifies the
following definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,
O[] : Cmd — (£ --» ¥),
assigns to every statement ¢ € C'md a partial state transformation

Olc] : ¥ --» X, which is defined as follows:

O[co := o' if {¢,0) — o' for some o/ € ¥
9= Yundefined otherwise

Remark: O[c]o can indeed be undefined
(consider e.g. ¢ = while true do skip; see Corollary 3.3)

m' Semantics and Verification of Software Summer Semester 2010

Equivalence of Statements

Definition 4.2 (Operational equivalence)

Two statements c1,ce € Cmd are called (operationally) equivalent
(notation: ¢1 ~ cg) if

D[[Cl]] = D[[CQ]].

Thus:
0 ¢ ~ cg iff Ofcr]o = Ofeg]o for every o € &

o In particular, Ofc;]o is undefined iff Ofcz]o is undefined

m' Semantics and Verification of Software Summer Semester 2010

	Repetition: Execution of Statements
	Functional of the Operational Semantics

