
Semantics and Verification of Software

Lecture 5: Operational/Denotational Semantics of WHILE

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Outline

1 Repetition: Execution of Statements

2 “Unwinding” of Loops

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

6 Denotational Semantics of Statements

Semantics and Verification of Software Summer Semester 2010 2

Execution of Statements

Remember:
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Definition (Execution relation for statements)

For c ∈ Cmd and σ, σ′ ∈ Σ, the execution relation 〈c, σ〉 → σ′ is defined
by the following rules:

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(if-t)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(wh-f)

〈b, σ〉 → false

〈while b do c, σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

Semantics and Verification of Software Summer Semester 2010 3

Determinism of Execution Relation

This operational semantics is well defined in the following sense:

Theorem

The execution relation for statements is deterministic, i.e., whenever

c ∈ Cmd and σ, σ′, σ′′ ∈ Σ such that 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′, then

σ′ = σ′′.

Proof.

To show:
〈c, σ〉 → σ′, 〈c, σ〉 → σ′′ =⇒ σ′ = σ′′

(by structural induction on derivation trees)

Semantics and Verification of Software Summer Semester 2010 4

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.4) justifies the
following definition:

Definition (Operational functional)

The functional of the operational semantics,

OJ.K : Cmd → (Σ 99K Σ),

assigns to every statement c ∈ Cmd a partial state transformation
OJcK : Σ 99K Σ, which is defined as follows:

OJcKσ :=

{

σ′ if 〈c, σ〉 → σ′ for some σ′ ∈ Σ
undefined otherwise

Remark: OJcKσ can indeed be undefined
(consider e.g. c = while true do skip; see Corollary 3.3)

Semantics and Verification of Software Summer Semester 2010 5

Equivalence of Statements

Definition (Operational equivalence)

Two statements c1, c2 ∈ Cmd are called (operationally) equivalent
(notation: c1 ∼ c2) if

OJc1K = OJc2K.

Thus:

c1 ∼ c2 iff OJc1Kσ = OJc2Kσ for every σ ∈ Σ

In particular, OJc1Kσ is undefined iff OJc2Kσ is undefined

Semantics and Verification of Software Summer Semester 2010 6

Outline

1 Repetition: Execution of Statements

2 “Unwinding” of Loops

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

6 Denotational Semantics of Statements

Semantics and Verification of Software Summer Semester 2010 7

“Unwinding” of Loops

Simple application of statement equivalence: test of execution
condition in a while loop can be represented by an if statement

Lemma 5.1

For every b ∈ BExp and c ∈ Cmd,

while b do c ∼ if b then (c;while b do c) else skip.

Semantics and Verification of Software Summer Semester 2010 8

“Unwinding” of Loops

Simple application of statement equivalence: test of execution
condition in a while loop can be represented by an if statement

Lemma 5.1

For every b ∈ BExp and c ∈ Cmd,

while b do c ∼ if b then (c;while b do c) else skip.

Proof.

on the board

Semantics and Verification of Software Summer Semester 2010 8

Outline

1 Repetition: Execution of Statements

2 “Unwinding” of Loops

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

6 Denotational Semantics of Statements

Semantics and Verification of Software Summer Semester 2010 9

Summary: Operational Semantics

Formalized by evaluation/execution relations

Semantics and Verification of Software Summer Semester 2010 10

Summary: Operational Semantics

Formalized by evaluation/execution relations

Inductively defined by derivation trees using structural operational
rules

Semantics and Verification of Software Summer Semester 2010 10

Summary: Operational Semantics

Formalized by evaluation/execution relations

Inductively defined by derivation trees using structural operational
rules

Enables proofs about operational behaviour of programs using
structural induction

Semantics and Verification of Software Summer Semester 2010 10

Summary: Operational Semantics

Formalized by evaluation/execution relations

Inductively defined by derivation trees using structural operational
rules

Enables proofs about operational behaviour of programs using
structural induction

Semantic functional characterizes complete input/output
behaviour of programs

Semantics and Verification of Software Summer Semester 2010 10

Outline

1 Repetition: Execution of Statements

2 “Unwinding” of Loops

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

6 Denotational Semantics of Statements

Semantics and Verification of Software Summer Semester 2010 11

Denotational Semantics of WHILE

Primary aspect of a program: its “effect”, i.e., input/output
behaviour

Semantics and Verification of Software Summer Semester 2010 12

Denotational Semantics of WHILE

Primary aspect of a program: its “effect”, i.e., input/output
behaviour

In operational semantics: indirect definition of semantic functional
OJ.K by execution relation

Semantics and Verification of Software Summer Semester 2010 12

Denotational Semantics of WHILE

Primary aspect of a program: its “effect”, i.e., input/output
behaviour

In operational semantics: indirect definition of semantic functional
OJ.K by execution relation

Now: abstract from operational details

Semantics and Verification of Software Summer Semester 2010 12

Denotational Semantics of WHILE

Primary aspect of a program: its “effect”, i.e., input/output
behaviour

In operational semantics: indirect definition of semantic functional
OJ.K by execution relation

Now: abstract from operational details

Denotational semantics: direct definition of program effect by
induction on its syntactic structure

Semantics and Verification of Software Summer Semester 2010 12

Outline

1 Repetition: Execution of Statements

2 “Unwinding” of Loops

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

6 Denotational Semantics of Statements

Semantics and Verification of Software Summer Semester 2010 13

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 5.2 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,

AJ.K : AExp → (Σ → Z),

is given by:

AJzKσ := z AJa1+a2Kσ := AJa1Kσ + AJa2Kσ
AJxKσ := σ(x) AJa1-a2Kσ := AJa1Kσ − AJa2Kσ

AJa1*a2Kσ := AJa1Kσ ∗ AJa2Kσ

Semantics and Verification of Software Summer Semester 2010 14

Semantics of Boolean Expressions

Definition 5.3 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,

BJ.K : BExp → (Σ → B),

is given by:
BJtKσ := t

BJa1=a2Kσ :=

{

true if AJa1Kσ = AJa2Kσ
false otherwise

BJa1>a2Kσ :=

{

true if AJa1Kσ > AJa2Kσ
false otherwise

BJ¬bKσ :=

{

true if BJbKσ = false

false otherwise

BJb1 ∧ b2Kσ :=

{

true if BJb1Kσ = BJb2Kσ = true

false otherwise

BJb1 ∨ b2Kσ :=

{

false if BJb1Kσ = BJb2Kσ = false

true otherwise

Semantics and Verification of Software Summer Semester 2010 15

Outline

1 Repetition: Execution of Statements

2 “Unwinding” of Loops

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

6 Denotational Semantics of Statements

Semantics and Verification of Software Summer Semester 2010 16

Semantics of Statements I

Now: semantic functional
CJ.K : Cmd → (Σ 99K Σ)

Semantics and Verification of Software Summer Semester 2010 17

Semantics of Statements I

Now: semantic functional
CJ.K : Cmd → (Σ 99K Σ)

Same type as operational functional
OJ.K : Cmd → (Σ 99K Σ)

(in fact, both will turn out to be the same
=⇒ equivalence of operational and denotational semantics)

Semantics and Verification of Software Summer Semester 2010 17

Semantics of Statements I

Now: semantic functional
CJ.K : Cmd → (Σ 99K Σ)

Same type as operational functional
OJ.K : Cmd → (Σ 99K Σ)

(in fact, both will turn out to be the same
=⇒ equivalence of operational and denotational semantics)

Inductive definition employs auxiliary functions:

identity on states: idΣ : Σ 99K Σ : σ 7→ σ

(strict) composition of partial state transformations:
◦ : (Σ 99K Σ) × (Σ 99K Σ) → (Σ 99K Σ)

where, for every f, g : Σ 99K Σ and σ ∈ Σ,

(g ◦ f)(σ) :=

{

g(f(σ)) if f(σ) defined
undefined otherwise

semantic conditional:
cond : (Σ → B) × (Σ 99K Σ) × (Σ 99K Σ) → (Σ 99K Σ)

where, for every p : Σ → B, f, g : Σ 99K Σ, and σ ∈ Σ,

cond(p, f, g)(σ) :=

{

f(σ) if p(σ) = true

g(σ) otherwise

Semantics and Verification of Software Summer Semester 2010 17

Semantics of Statements II

Definition 5.4 (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Summer Semester 2010 18

Semantics of Statements III

Remarks:

Definition of CJcK given by induction on syntactic structure of
c ∈ Cmd

in particular, CJwhile b do cK only refers to BJbK and CJcK
(and not to CJwhile b do cK again)
note difference to OJcK:

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

Semantics and Verification of Software Summer Semester 2010 19

Semantics of Statements III

Remarks:

Definition of CJcK given by induction on syntactic structure of
c ∈ Cmd

in particular, CJwhile b do cK only refers to BJbK and CJcK
(and not to CJwhile b do cK again)
note difference to OJcK:

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

In CJc1;c2K := CJc2K ◦ CJc1K, function composition ◦ has to be
strict since non-termination of c1 implies non-termination of c1;c2

(i.e., CJc1Kσ = undefined =⇒ CJc1;c2Kσ = undefined)

Semantics and Verification of Software Summer Semester 2010 19

Semantics of Statements III

Remarks:

Definition of CJcK given by induction on syntactic structure of
c ∈ Cmd

in particular, CJwhile b do cK only refers to BJbK and CJcK
(and not to CJwhile b do cK again)
note difference to OJcK:

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

In CJc1;c2K := CJc2K ◦ CJc1K, function composition ◦ has to be
strict since non-termination of c1 implies non-termination of c1;c2

(i.e., CJc1Kσ = undefined =⇒ CJc1;c2Kσ = undefined)

In CJwhile b do cK := fix(Φ), fix denotes a fixpoint operator
(which remains to be defined)
=⇒ “fixpoint semantics”

Semantics and Verification of Software Summer Semester 2010 19

Semantics of Statements III

Remarks:

Definition of CJcK given by induction on syntactic structure of
c ∈ Cmd

in particular, CJwhile b do cK only refers to BJbK and CJcK
(and not to CJwhile b do cK again)
note difference to OJcK:

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

In CJc1;c2K := CJc2K ◦ CJc1K, function composition ◦ has to be
strict since non-termination of c1 implies non-termination of c1;c2

(i.e., CJc1Kσ = undefined =⇒ CJc1;c2Kσ = undefined)

In CJwhile b do cK := fix(Φ), fix denotes a fixpoint operator
(which remains to be defined)
=⇒ “fixpoint semantics”

But: why fixpoints?

Semantics and Verification of Software Summer Semester 2010 19

	Repetition: Execution of Statements
	``Unwinding'' of Loops
	Summary: Operational Semantics
	The Denotational Approach
	Denotational Semantics of Expressions
	Denotational Semantics of Statements

