Semantics and Verification of Software

Lecture 5: Operational/Denotational Semantics of WHILE

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

© Repetition: Execution of Statements

Rm Semantics and Verification of Software Summer Semester 2010

Execution of Statements

Remember:
cu=skip | x :=a|c1;co | if b then ¢ else ¢y | while b do ¢ € Cmd

Definition (Execution relation for statements)

For ¢ € Cmd and 0,0’ € ¥, the execution relation (c,0) — o' is defined
by the following rules:

(skip) ————— (o) —— 20 7
(skip,0) — 0o (x :=a,0) — o[z > 2]
(c1,0) = 0 {ca,0") — " (b,0) — true (c1,0) — o’
(seq) (if-t) =
(c1;¢0,0) — a” (if b then c; else cy,0) — o’
. (b,0) — false (co,0) — o’ whet) (b,o) — false
11- wh-

(if b then ¢; else c2,0) — o’ (while bdo ¢,0) — 0

(b,0) — true (c,0) — ¢’ (while b do ¢,0’) — o”
(wh-t)

(while b do ¢,0) — o”

m' Semantics and Verification of Software Summer Semester 2010

Determinism of Execution Relation

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever

c € Cmd and o,0',0" € ¥ such that (c,0) — o' and (c,0) — o”, then
/ !

o =dod".

To show:

(c,0) =o' {c,0) = 0" = o' =0"

(by structural induction on derivation trees) O

m Semantics and Verification of Software Summer Semester 2010

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.4) justifies the
following definition:

Definition (Operational functional)

The functional of the operational semantics,
O[] : Cmd — (£ --» %),

assigns to every statement ¢ € C'md a partial state transformation
Olc] : ¥ --» X, which is defined as follows:

O[co := o' if {¢,0) — o' for some o/ € ¥
9= Yundefined otherwise

Remark: O[c]o can indeed be undefined
(consider e.g. ¢ = while true do skip; see Corollary 3.3)

m' Semantics and Verification of Software Summer Semester 2010

Equivalence of Statements

Definition (Operational equivalence)

Two statements c1,ce € Cmd are called (operationally) equivalent
(notation: ¢1 ~ cg) if

D[[Cl]] = D[[CQ]].

Thus:
0 ¢ ~ cg iff Ofcr]o = Ofeg]o for every o € &

o In particular, Ofc;]o is undefined iff Ofcz]o is undefined

m' Semantics and Verification of Software Summer Semester 2010

© “Unwinding” of Loops

Rm Semantics and Verification of Software Summer Semester 2010

“Unwinding” of Loops

Simple application of statement equivalence: test of execution
condition in a while loop can be represented by an if statement

For every b € BExp and c € Cmd,

while b do ¢ ~ if b then (c;while b do c¢) else skip.

on the board O

m Semantics and Verification of Software Summer Semester 2010

© Summary: Operational Semantics

Rm Semantics and Verification of Software Summer Semester 2010

Summary: Operational Semantics

o Formalized by evaluation/execution relations

@ Inductively defined by derivation trees using structural operational
rules

@ Enables proofs about operational behaviour of programs using
structural induction

@ Semantic functional characterizes complete input/output
behaviour of programs

Rm Semantics and Verification of Software Summer Semester 2010 10

@ The Denotational Approach

Rm Semantics and Verification of Software Summer Semester 2010 11

Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output
behaviour

o In operational semantics: indirect definition of semantic functional
O[.] by execution relation

@ Now: abstract from operational details

o Denotational semantics: direct definition of program effect by
induction on its syntactic structure

Rm Semantics and Verification of Software Summer Semester 2010

© Denotational Semantics of Expressions

Rm Semantics and Verification of Software Summer Semester 2010 13

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 5.2 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,
A[] : AExp — (¥ — Z),
is given by:
Alz]o = = Alai+az]o := Afar]o + Afaz]o

Wlz]o = o(zx) Alai-az]o := Afar]o — AJaz]o
Wlar*as]o := Ufai]o * Afaz]o

m Semantics and Verification of Software Summer Semester 2010

Semantics of Boolean Expressions

Definition 5.3 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,
B[.] : BExp — (X — B),
is given by:
Bt]o =t
Blood = {5, 3ol =l
Blaouio - {1 Lol > e
oo - {52, 30 -
s - {5 3 -
B V ba]o = :";‘l'f: ;ftﬂg]sc; — Bby]o = false

m Semantics and Verification of Software Summer Semester 2010 15

© Denotational Semantics of Statements

Rm Semantics and Verification of Software Summer Semester 2010

Semantics of Statements 1

® Now: semantic functional
C[.]: Cmd — (£ --» %)
® Same type as operational functional
O[] : Cmd — (2 --+ %)
(in fact, both will turn out to be the same
= equivalence of operational and denotational semantics)
® Inductive definition employs auxiliary functions:
o identity on states: idy : X --+ X :0+— 0
o (strict) composition of partial state transformations:
0:(E-») x(E--2%)—> (X--%)
where, for every f,g: 3 --+» X and 0 € X,
(g0 (o) = {g(f(a)) if f(o) defined

undefined otherwise

o semantic conditional:
cond: (X —=>B)x (B--+X)x(Z--»%) = (Z--2%)
where, for every p: X — B, f,g: ¥ --+» ¥, and g € X,

cond(p, f,g)(0) := {f(a) if p(o) = true

g(o) otherwise

Rm Semantics and Verification of Software Summer Semester 2010 17

Semantics of Statements 11

Definition 5.4 (Denotational semantics of statements)

The (denotational) semantic functional for statements,
€[] : Cmd — (£ --» %),
is given by:
C[skip] := idy
Clz :=a]o = o[z — Aa]o]
Q:[[Cl;CQ]] = Q:[[Cg]] o Q:[[Cl]]

C[if b then ¢; else 3] := cond(B[b], €[c1], C[c2])
¢[while b do c] := fix(®)

where @ : (¥ --» X) — (X --» X) : f > cond(B[b], f o €[], ids)

m' Semantics and Verification of Software Summer Semester 2010 18

Semantics of Statements 111

Remarks:

@ Definition of €[¢] given by induction on syntactic structure of
ce Cmd
9 in particular, €[while b do c] only refers to B[b] and €[c]
(and not to €[while b do] again)
o note difference to O[c]:

(whet) (b,0) — true {c,0) — ¢’ (while b do ¢,0’) — o”
W -

(while b do ¢,0) — o

e In €fcy ;2] := €ea] o €[eq], function composition o has to be
strict since non-termination of ¢; implies non-termination of ¢q ;¢
(i.e., €fc1]o = undefined = €[c;;c2]o = undefined)

o In ¢fwhile b do] := fix(®), fix denotes a fixpoint operator
(which remains to be defined)
= “fixpoint semantics”

But: why fixpoints?

m' Semantics and Verification of Software Summer Semester 2010 19

	Repetition: Execution of Statements
	``Unwinding'' of Loops
	Summary: Operational Semantics
	The Denotational Approach
	Denotational Semantics of Expressions
	Denotational Semantics of Statements

