
Semantics and Verification of Software

Lecture 5: Operational/Denotational Semantics of WHILE

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Outline

1 Repetition: Execution of Statements

2 “Unwinding” of Loops

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

6 Denotational Semantics of Statements

Semantics and Verification of Software Summer Semester 2010 2

Execution of Statements

Remember:
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Definition (Execution relation for statements)

For c ∈ Cmd and σ, σ′ ∈ Σ, the execution relation 〈c, σ〉 → σ′ is defined
by the following rules:

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(if-t)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(wh-f)

〈b, σ〉 → false

〈while b do c, σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

Semantics and Verification of Software Summer Semester 2010 3

Determinism of Execution Relation

This operational semantics is well defined in the following sense:

Theorem

The execution relation for statements is deterministic, i.e., whenever

c ∈ Cmd and σ, σ′, σ′′ ∈ Σ such that 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′, then

σ′ = σ′′.

Proof.

To show:
〈c, σ〉 → σ′, 〈c, σ〉 → σ′′ =⇒ σ′ = σ′′

(by structural induction on derivation trees)

Semantics and Verification of Software Summer Semester 2010 4

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.4) justifies the
following definition:

Definition (Operational functional)

The functional of the operational semantics,

OJ.K : Cmd → (Σ 99K Σ),

assigns to every statement c ∈ Cmd a partial state transformation
OJcK : Σ 99K Σ, which is defined as follows:

OJcKσ :=

{

σ′ if 〈c, σ〉 → σ′ for some σ′ ∈ Σ
undefined otherwise

Remark: OJcKσ can indeed be undefined
(consider e.g. c = while true do skip; see Corollary 3.3)

Semantics and Verification of Software Summer Semester 2010 5

Equivalence of Statements

Definition (Operational equivalence)

Two statements c1, c2 ∈ Cmd are called (operationally) equivalent
(notation: c1 ∼ c2) if

OJc1K = OJc2K.

Thus:

c1 ∼ c2 iff OJc1Kσ = OJc2Kσ for every σ ∈ Σ

In particular, OJc1Kσ is undefined iff OJc2Kσ is undefined

Semantics and Verification of Software Summer Semester 2010 6

Outline

1 Repetition: Execution of Statements

2 “Unwinding” of Loops

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

6 Denotational Semantics of Statements

Semantics and Verification of Software Summer Semester 2010 7

“Unwinding” of Loops

Simple application of statement equivalence: test of execution
condition in a while loop can be represented by an if statement

Lemma 5.1

For every b ∈ BExp and c ∈ Cmd,

while b do c ∼ if b then (c;while b do c) else skip.

Proof.

on the board

Semantics and Verification of Software Summer Semester 2010 8

Outline

1 Repetition: Execution of Statements

2 “Unwinding” of Loops

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

6 Denotational Semantics of Statements

Semantics and Verification of Software Summer Semester 2010 9

Summary: Operational Semantics

Formalized by evaluation/execution relations

Inductively defined by derivation trees using structural operational
rules

Enables proofs about operational behaviour of programs using
structural induction

Semantic functional characterizes complete input/output
behaviour of programs

Semantics and Verification of Software Summer Semester 2010 10

Outline

1 Repetition: Execution of Statements

2 “Unwinding” of Loops

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

6 Denotational Semantics of Statements

Semantics and Verification of Software Summer Semester 2010 11

Denotational Semantics of WHILE

Primary aspect of a program: its “effect”, i.e., input/output
behaviour

In operational semantics: indirect definition of semantic functional
OJ.K by execution relation

Now: abstract from operational details

Denotational semantics: direct definition of program effect by
induction on its syntactic structure

Semantics and Verification of Software Summer Semester 2010 12

Outline

1 Repetition: Execution of Statements

2 “Unwinding” of Loops

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

6 Denotational Semantics of Statements

Semantics and Verification of Software Summer Semester 2010 13

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 5.2 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,

AJ.K : AExp → (Σ → Z),

is given by:

AJzKσ := z AJa1+a2Kσ := AJa1Kσ + AJa2Kσ
AJxKσ := σ(x) AJa1-a2Kσ := AJa1Kσ − AJa2Kσ

AJa1*a2Kσ := AJa1Kσ ∗ AJa2Kσ

Semantics and Verification of Software Summer Semester 2010 14

Semantics of Boolean Expressions

Definition 5.3 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,

BJ.K : BExp → (Σ → B),

is given by:
BJtKσ := t

BJa1=a2Kσ :=

{

true if AJa1Kσ = AJa2Kσ
false otherwise

BJa1>a2Kσ :=

{

true if AJa1Kσ > AJa2Kσ
false otherwise

BJ¬bKσ :=

{

true if BJbKσ = false

false otherwise

BJb1 ∧ b2Kσ :=

{

true if BJb1Kσ = BJb2Kσ = true

false otherwise

BJb1 ∨ b2Kσ :=

{

false if BJb1Kσ = BJb2Kσ = false

true otherwise

Semantics and Verification of Software Summer Semester 2010 15

Outline

1 Repetition: Execution of Statements

2 “Unwinding” of Loops

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

6 Denotational Semantics of Statements

Semantics and Verification of Software Summer Semester 2010 16

Semantics of Statements I

Now: semantic functional
CJ.K : Cmd → (Σ 99K Σ)

Same type as operational functional
OJ.K : Cmd → (Σ 99K Σ)

(in fact, both will turn out to be the same
=⇒ equivalence of operational and denotational semantics)

Inductive definition employs auxiliary functions:

identity on states: idΣ : Σ 99K Σ : σ 7→ σ

(strict) composition of partial state transformations:
◦ : (Σ 99K Σ) × (Σ 99K Σ) → (Σ 99K Σ)

where, for every f, g : Σ 99K Σ and σ ∈ Σ,

(g ◦ f)(σ) :=

{

g(f(σ)) if f(σ) defined
undefined otherwise

semantic conditional:
cond : (Σ → B) × (Σ 99K Σ) × (Σ 99K Σ) → (Σ 99K Σ)

where, for every p : Σ → B, f, g : Σ 99K Σ, and σ ∈ Σ,

cond(p, f, g)(σ) :=

{

f(σ) if p(σ) = true

g(σ) otherwise

Semantics and Verification of Software Summer Semester 2010 17

Semantics of Statements II

Definition 5.4 (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Summer Semester 2010 18

Semantics of Statements III

Remarks:

Definition of CJcK given by induction on syntactic structure of
c ∈ Cmd

in particular, CJwhile b do cK only refers to BJbK and CJcK
(and not to CJwhile b do cK again)
note difference to OJcK:

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

In CJc1;c2K := CJc2K ◦ CJc1K, function composition ◦ has to be
strict since non-termination of c1 implies non-termination of c1;c2

(i.e., CJc1Kσ = undefined =⇒ CJc1;c2Kσ = undefined)

In CJwhile b do cK := fix(Φ), fix denotes a fixpoint operator
(which remains to be defined)
=⇒ “fixpoint semantics”

But: why fixpoints?

Semantics and Verification of Software Summer Semester 2010 19

	Repetition: Execution of Statements
	``Unwinding'' of Loops
	Summary: Operational Semantics
	The Denotational Approach
	Denotational Semantics of Expressions
	Denotational Semantics of Statements

