Semantics and Verification of Software

Lecture 6: Denotational Semantics of WHILE 1
(Fixpoint Semantics of while Loop)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Repetition: Operational and Denotational Semantics

Rm Semantics and Verification of Software Summer Semester 2010



Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.4) justifies the
following definition:

Definition (Operational functional)

The functional of the operational semantics,

O[] : Cmd — (£ --» X),
assigns to every statement ¢ € C'md a partial state transformation
O[c] : ¥ --» X, which is defined as follows:

/

oo = {° if (¢,0) — o' for some o’/ € X
7 “= | undefined otherwise

Remark: O[c]o can indeed be undefined
(consider e.g. ¢ = while true do skip; see Corollary 3.3)

m Semantics and Verification of Software Summer Semester 2010



Equivalence of Statements

Definition (Operational equivalence)

Two statements c;,co € Cmd are called (operationally) equivalent
(notation: ¢; ~ cg) if

D[[Cl]] = D[[CQ]].

Thus:
0 ¢ ~ cg iff Ofcr]o = Ofea]o for every o € &
o In particular, Ofc;]o is undefined iff Ofea]o is undefined

m' Semantics and Verification of Software Summer Semester 2010



“Unwinding” of Loops

Simple application of statement equivalence: test of execution
condition in a while loop can be represented by an if statement

For every b € BEzp and ¢ € Cmd,

while b do ¢ ~ if b then (c;while b do ¢) else skip.

on the board O l

m' Semantics and Verification of Software Summer Semester 2010



Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,
A[] : AExp — (¥ — Z),
is given by:
Alz]o = = Alar+az]o := Afar]o + Afaz]o

Alz]o = o(z) Alar-as]o := Ufai]o — Afaz]o
Wlar*as]o := Ufai]o * Afaz]o

m Semantics and Verification of Software Summer Semester 2010



Semantics of Boolean Expressions

Definition (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,
B[.] : BExp — (X — B),
is given by:
Bt]o =t
Blood = {5, 3ol =l
Blaouio - {1 Lol > e
oo - {52, 30 -
s - {5 3 -
B V ba]o = :";‘LS: fﬂgﬂﬁ — Bby]o = false

m' Semantics and Verification of Software Summer Semester 2010



Semantics of Statements 1

® Now: semantic functional
C[.]: Cmd — (£ --» %)
® Same type as operational functional
O[] : Cmd — (2 --+ %)
(in fact, both will turn out to be the same
= equivalence of operational and denotational semantics)
® Inductive definition employs auxiliary functions:
o identity on states: idy : X --+ X :0+— 0
o (strict) composition of partial state transformations:
0:(E-» ) x(E--2%)—> (X--%)
where, for every f,g: 3 --+» X and 0 € X,
(g0 (o) = {g(f(a)) if f(o) defined

undefined otherwise

o semantic conditional:
cond: (X —=>B)x (B--+X)x(Z--»%) = (Z--2%)
where, for every p: X — B, f,g: ¥ --+» ¥, and g € X,

cond(p, f,g)(0) := {f(a) if p(o) = true

g(o) otherwise

Rm Semantics and Verification of Software Summer Semester 2010



Semantics of Statements 11

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,
€[] : Cmd — (£ --» %),
is given by:
C[skip] := idy
Clz :=a]o = o[z — Aa]o]
Q:[[Cl;CQ]] = Q:[[Cg]] o Q:[[Cl]]

C[if b then ¢; else 3] := cond(B[b], €[c1], C[c2])
¢[while b do c] := fix(®)

where @ : (¥ --» X) — (X --» X) : f > cond(B[b], f o €[], ids)

m' Semantics and Verification of Software Summer Semester 2010



Semantics of Statements 111

Remarks:

@ Definition of €[¢] given by induction on syntactic structure of
ce Cmd
9 in particular, €[while b do c] only refers to B[b] and €[c]
(and not to €[while b do ] again)
o note difference to O[c]:

(whet) (b,0) — true {c,0) — ¢’ (while b do ¢,0’) — o”
W -

(while b do ¢,0) — o

e In €fcy ;2] := €ea] o €[eq], function composition o has to be
strict since non-termination of ¢; implies non-termination of ¢q ;¢
(i.e., €fc1]o = undefined = €[c;;c2]o = undefined)

o In ¢fwhile b do ] := fix(®), fix denotes a fixpoint operator
(which remains to be defined)
= “fixpoint semantics”

But: why fixpoints?

m' Semantics and Verification of Software Summer Semester 2010 10



© Fixpoint Semantics of while Loop

Rm Semantics and Verification of Software Summer Semester 2010 11



Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 5.1)

Rm Semantics and Verification of Software Summer Semester 2010 12



Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 5.1)
o Using the known parts of Def. 5.4, we obtain:

¢[while b do (]

Rm Semantics and Verification of Software Summer Semester 2010 12



Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 5.1)
o Using the known parts of Def. 5.4, we obtain:

¢[while b do (]

o ¢[if b then (c;while b do c¢) else skip]

Rm Semantics and Verification of Software Summer Semester 2010 12



Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 5.1)
o Using the known parts of Def. 5.4, we obtain:

¢[while b do (]

o ¢[if b then (c;while b do c¢) else skip]

Def. 5.4

cond(B[b], €[c;while b do ], €[skip])

Rm Semantics and Verification of Software Summer Semester 2010 12



Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 5.1)
o Using the known parts of Def. 5.4, we obtain:
¢[while b do (]

o ¢[if b then (c;while b do c¢) else skip]

Del.5-4 cond(B[b], €[c;while b do ], €[skip])
Def.:5.4

cond(B[b], €[while b do ] o €[c],idx)

m' Semantics and Verification of Software Summer Semester 2010



Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 5.1)
o Using the known parts of Def. 5.4, we obtain:
¢[while b do (]
o ¢[if b then (c;while b do c¢) else skip]
Del.5-4 cond(B[b], €[c;while b do ], €[skip])

Def.54 cond(B[b], €[while b do ] o €[c],idx)

o Abbreviating f := €[while b do ¢] this yields:
f = cond(B[b], f o €[c],idx)

m' Semantics and Verification of Software Summer Semester 2010



Why Fixpoints?

o Goal: preserve validity of equivalence
¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 5.1)
o Using the known parts of Def. 5.4, we obtain:
¢[while b do (]

o ¢[if b then (c;while b do c¢) else skip]

Del.5-4 cond(B[b], €[c;while b do ], €[skip])

Def.54 cond(B[b], €[while b do ] o €[c],idx)

o Abbreviating f := €[while b do ¢] this yields:
f = cond(B[b], f o €[c],idx)
@ Hence f must be a solution of this recursive equation

m' Semantics and Verification of Software Summer Semester 2010



Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 5.1)
Using the known parts of Def. 5.4, we obtain:
¢[while b do (]
o ¢[if b then (c;while b do c¢) else skip]
Del.5-4 cond(B[b], €[c;while b do ], €[skip])

cond(B[b], €[while b do ] o €[c],idx)

(2

Def. 5.4

©

Abbreviating f := €[while b do c] this yields:
f = cond(B[b], f o €[c],idx)
Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping
O:(X--+3)—= (X --+3): f— cond(B[b], f o €[], idy)
(since the equation can be stated as f = ®(f))

m' Semantics and Verification of Software Summer Semester 2010 12

¢ ¢




Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics
Existence: there does not need to exist any fixpoint. Examples:
Q ¢1:N—N:n+—n+1 has no fixpoint

e B . g it f=g
QP :(X-»%)—=(E-»X):fr {92 otherwise

(where g1 # g2) has no fixpoint

Rm Semantics and Verification of Software Summer Semester 2010



Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Existence: there does not need to exist any fixpoint. Examples:
@ ¢1:N—-N:n+—n+1 has no fixpoint

e B . g it f=g
QP :(X-»%)—=(E-»X):fr {92 otherwise

(where g1 # g2) has no fixpoint

Solution: in our setting, fixpoints always exist

Rm Semantics and Verification of Software Summer Semester 2010



Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics
Existence: there does not need to exist any fixpoint. Examples:
@ ¢1:N—-N:n+—n+1 has no fixpoint

e B . g it f=g
QP :(X-»%)—=(E-»X):fr {92 otherwise

(where g1 # g2) has no fixpoint

Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:
@ ¢2:N — N:n s n? has fixpoints {0,1}
@ every state transformation f is a fixpoint of
Oy:(N-2Y)=(E--):f—f

Rm Semantics and Verification of Software Summer Semester 2010



Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics
Existence: there does not need to exist any fixpoint. Examples:
@ ¢1:N—-N:n+—n+1 has no fixpoint

e B . g it f=g
QP :(X-»%)—=(E-»X):fr {92 otherwise

(where g1 # g2) has no fixpoint
Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:
@ ¢2:N — N:n s n? has fixpoints {0,1}
@ every state transformation f is a fixpoint of
Oy:(N-2Y)=(E--):f—f

Solution: uniqueness guaranteed by choosing a special fixpoint

Rm Semantics and Verification of Software Summer Semester 2010



© Characterization of fix(®)

Rm Semantics and Verification of Software Summer Semester 2010 14



Characterization of fix(®) I

o Let b € BExzp and ¢ € Cmd

Rm Semantics and Verification of Software Summer Semester 2010 15



Characterization of fix(®) I

o Let b € BExzp and ¢ € Cmd
o Let ®(f) := cond(B[b], f o €[c],idyx)

Rm Semantics and Verification of Software Summer Semester 2010 15



Characterization of fix(®) I

o Let b € BExzp and ¢ € Cmd
o Let ®(f) := cond(B[b], f o €[c],idyx)
o Let fy: X --» X be a fixpoint of @, i.e., ®(fy) = fo

Rm Semantics and Verification of Software Summer Semester 2010 15



Characterization of fix(®) I

o Let b € BExp and ¢ € Cmd

o Let ®(f) := cond(B[b], f o €[c],idyx)

o Let fy: X --» X be a fixpoint of @, i.e., ®(fy) = fo

o Given some initial state op € X, we will distinguish the following
cases:

@ loop while b do ¢ terminates after n iterations (n € N)
© body c diverges in the nth iteration

(since it contains a non-terminating while statement)
© loop while b do c itself diverges

m' Semantics and Verification of Software Summer Semester 2010 15



Case 1: Termination of Loop

@ Loop while b do ¢ terminates after n iterations (n € N)

Rm Semantics and Verification of Software Summer Semester 2010 16



Case 1: Termination of Loop

@ Loop while b do ¢ terminates after n iterations (n € N)

@ Formally: there exist o1,...,0, € X such that
true f0<i<n
B[b]oi = {false ifi=n and
Clc]oi = oit forevery 0 <i<n

Rm Semantics and Verification of Software Summer Semester 2010



Case 1: Termination of Loop

@ Loop while b do ¢ terminates after n iterations (n € N)

@ Formally: there exist o1,...,0, € X such that
true f0<i<n
B[b]oi = {false ifi=n and
Clc]oi = oit forevery 0 <i<n

@ Now the definition ®(f) := cond(B[b], f o €[c],idsx)
implies, for every 0 < i < n,
D(fo)(o;) = (foo€[c])(o;) since B[b]o; = true
= fo(oit1) and
O(fo)(on) = op since B[b]o,, = false

Rm Semantics and Verification of Software Summer Semester 2010



Case 1: Termination of Loop

@ Loop while b do ¢ terminates after n iterations (n € N)

@ Formally: there exist o1,...,0, € X such that
true f0<i<n
B[b]oi = {false ifi=n and
Clc]oi = oit forevery 0 <i<n

@ Now the definition ®(f) := cond(B[b], f o €[c],idsx)
implies, for every 0 < i < n,
@(fo)(oi) = (foo€c])(o;) since B[b]o; = true
= f()(O'Z'+1) and

O(fo)(on) = op since B[b]o,, = false

@ Since ®(fy) = fo it follows that
N f0(0i+1) ifo<i<n
foloi) = {crn ifi=n

and hence

fo(oo) = folo1) = ... folon) = on

Rm Semantics and Verification of Software Summer Semester 2010



Case 1: Termination of Loop

@ Loop while b do ¢ terminates after n iterations (n € N)

@ Formally: there exist o1,...,0, € X such that
true f0<i<n
B[b]oi = {false ifi=n and
Clc]oi = oit forevery 0 <i<n

@ Now the definition ®(f) := cond(B[b], f o €[c],idsx)
implies, for every 0 < i < n,
@(fo)(oi) = (foo€c])(o;) since B[b]o; = true
= f()(O'Z'+1) and

O(fo)(on) = op since B[b]o,, = false

@ Since ®(fy) = fo it follows that
N f0(0i+1) ifo<i<n
foloi) = {crn ifi=n

and hence

fo(oo) = folo1) = ... folon) = on

= All fixpoints fj coincide on og!

Rm Semantics and Verification of Software Summer Semester 2010



Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

Rm Semantics and Verification of Software Summer Semester 2010



Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

o Formally: there exist o1,...,0,-1 € % such that

B[b]o; = true for every 0 <i < n and
¢or = {am fo<i<n-—2

undefined ifi=n—-1

Rm Semantics and Verification of Software Summer Semester 2010 17



Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

o Formally: there exist o1,...,0,-1 € % such that

B[b]o; = true for every 0 <i < n and

o _ ) 0i+1 1f0§z§n—2
Cefo: = {undeﬁned ifi=n—1

@ Just as in the previous case (setting o, := undefined) it follows
that

fo(og) = undefined

Rm Semantics and Verification of Software Summer Semester 2010 17



Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

o Formally: there exist o1,...,0,-1 € % such that

B[b]o; = true for every 0 <i < n and

o _ ) 0i+1 1f0§z§n—2
Cefo: = {undeﬁned ifi=n—1

@ Just as in the previous case (setting o, := undefined) it follows
that
fo(og) = undefined

= Again all fixpoints fy coincide on og!

Rm Semantics and Verification of Software Summer Semester 2010 17



Case 3: Divergence of Loop

@ Loop while b do c diverges

Rm Semantics and Verification of Software Summer Semester 2010 18



Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist o1, 09,... € X such that

B[b]o; = true and
ClcJo; = oip1 for every i € N

Rm Semantics and Verification of Software Summer Semester 2010



Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist o1, 09,... € X such that

B[b]o; = true and
ClcJo; = oip1 for every i € N

@ Here only derivable:

foloo) = fo(o;) for every i € N

Rm Semantics and Verification of Software Summer Semester 2010



Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist o1, 09,... € X such that

B[b]o; = true and
ClcJo; = oip1 for every i € N

@ Here only derivable:

foloo) = fo(o;) for every i € N

—> Value of fy(og) not determined!

Rm Semantics and Verification of Software Summer Semester 2010



For ®(fy) = fo and initial state o9 € X, case distinction yields:
@ Loop while b do ¢ terminates after n iterations (n € N)
= fo(oo) = on
© Body c diverges in the nth iteration
= fo(op) = undefined
© Loop while b do c diverges
= no condition on fy (only fo(og) = fo(o;) for every i € N)

Rm Semantics and Verification of Software Summer Semester 2010



For ®(fy) = fo and initial state o9 € X, case distinction yields:
@ Loop while b do ¢ terminates after n iterations (n € N)
= fo(oo) = on
© Body c diverges in the nth iteration
= fo(op) = undefined
© Loop while b do c diverges
= no condition on fy (only fo(og) = fo(o;) for every i € N)

o Not surprising since, e.g., the loop while true do skip yields for
every f: X --» 3
®(f) = cond(B[true], f o €[skip],ids) = f

m' Semantics and Verification of Software Summer Semester 2010 19



For ®(fy) = fo and initial state o9 € X, case distinction yields:
@ Loop while b do ¢ terminates after n iterations (n € N)
= fo (UO) = 0On
© Body c diverges in the nth iteration
= fo(op) = undefined
© Loop while b do c diverges
= no condition on fy (only fo(og) = fo(o;) for every i € N)

o Not surprising since, e.g., the loop while true do skip yields for
every f: X --» 3
®(f) = cond(B[true], f o €[skip],ids) = f
@ On the other hand, our operational understanding requires, for
every og € X,

¢[while true do skip]op = undefined

m' Semantics and Verification of Software Summer Semester 2010 19



For ®(fy) = fo and initial state o9 € X, case distinction yields:
@ Loop while b do ¢ terminates after n iterations (n € N)
= fo (UO) = 0On
© Body c diverges in the nth iteration
= fo(op) = undefined
© Loop while b do c diverges
= no condition on fy (only fo(og) = fo(o;) for every i € N)

o Not surprising since, e.g., the loop while true do skip yields for
every f: X --» 3
®(f) = cond(B[true], f o €[skip],ids) = f
@ On the other hand, our operational understanding requires, for
every og € X,
¢[while true do skip]op = undefined

fix(®) is the least defined fixpoint of ®.

m' Semantics and Verification of Software Summer Semester 2010 19



Making it Precise I

To use fixpoint theory, the notion of “least defined” has to be made
precise.

o Given f,g:% -—» X, let

/

fCg < foreveryo,0' €X: f(o)=0 = g(o)=0

(g is “at least as defined” as f)

Rm Semantics and Verification of Software Summer Semester 2010 20



Making it Precise I

To use fixpoint theory, the notion of “least defined” has to be made
precise.

o Given f,g:% -—» X, let

/

fCg < foreveryo,0' €X: f(o)=0 = g(o)=0

(g is “at least as defined” as f)

o Equivalent to requiring
graph(f) C graph(g)
where
graph(h) := {(0,0") | 0 € 3,0’ = h(o) defined} C ¥ x ¥

for every h: 3 --+ X

Rm Semantics and Verification of Software Summer Semester 2010



Making it Precise 11

Example 6.1

Let = € Var be fixed, and let fo, f1, f2, f3: 2 --+» X be given by

fo(o) := undefined

o if o(x) even
filo) = undefined otherwise
falo) = undefined otherwise

fa(o) =0

Semantics and Verification of Software Summer Semester 2010



Making it Precise 11

Example 6.1

Let = € Var be fixed, and let fo, f1, f2, f3: 2 --+» X be given by

fo(o) := undefined
if o(x) even

fi(o) = undeﬁned otherwise

- if o(x) odd
falo) = undeﬁned otherwise
fs(o) =0

This implies fo T f1 C f3, fo E f2 E f3, f1 £ f2, and fo IZ f1

Semantics and Verification of Software Summer Semester 2010



Characterization of fix(®) IT

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,

O(fix(D)) = fix(®)

o fix(®) is minimal with respect to C, i.e., for every fo: X --+ X
such that ®(fy) = fo,

fix(®) T fo

Rm Semantics and Verification of Software Summer Semester 2010



Characterization of fix(®) IT

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,

O(fix(D)) = fix(®)

o fix(®) is minimal with respect to C, i.e., for every fo: X --+ X
such that ®(fy) = fo,
fix(®) C fo

Example 6.2

For while true do skip we obtain for every f: 3 --» 3:

®(f) = cond(B[true], f o €[skip],idy) = f

Semantics and Verification of Software Summer Semester 2010



Characterization of fix(®) IT

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,

O(fix(D)) = fix(®)

o fix(®) is minimal with respect to C, i.e., for every fo: X --+ X
such that ®(fy) = fo,
fix(®) C fo

Example 6.2

For while true do skip we obtain for every f: 3 --» 3:
®(f) = cond(B[true], f o €[skip],idy) = f

= fix(®) = fy where fy(o) := undefined for every o € ¥
(that is, graph(fg) = 0)

Semantics and Verification of Software Summer Semester 2010



Characterization of fix(®) ITI

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c],idsx)

@ Show how it can be “computed” (more exactly: approximated)

Rm Semantics and Verification of Software Summer Semester 2010 23



Characterization of fix(®) ITI

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c],idsx)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain Y --+ X: chain-complete partial order

on function ®: continuity

Rm Semantics and Verification of Software Summer Semester 2010 23



	Repetition: Operational and Denotational Semantics
	Fixpoint Semantics of while Loop
	Characterization of fix()

