
Semantics and Verification of Software

Lecture 6: Denotational Semantics of WHILE I
(Fixpoint Semantics of while Loop)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/


Outline

1 Repetition: Operational and Denotational Semantics

2 Fixpoint Semantics of while Loop

3 Characterization of fix(Φ)

Semantics and Verification of Software Summer Semester 2010 2



Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.4) justifies the
following definition:

Definition (Operational functional)

The functional of the operational semantics,

OJ.K : Cmd → (Σ 99K Σ),

assigns to every statement c ∈ Cmd a partial state transformation
OJcK : Σ 99K Σ, which is defined as follows:

OJcKσ :=

{

σ′ if 〈c, σ〉 → σ′ for some σ′ ∈ Σ
undefined otherwise

Remark: OJcKσ can indeed be undefined
(consider e.g. c = while true do skip; see Corollary 3.3)

Semantics and Verification of Software Summer Semester 2010 3



Equivalence of Statements

Definition (Operational equivalence)

Two statements c1, c2 ∈ Cmd are called (operationally) equivalent
(notation: c1 ∼ c2) if

OJc1K = OJc2K.

Thus:

c1 ∼ c2 iff OJc1Kσ = OJc2Kσ for every σ ∈ Σ

In particular, OJc1Kσ is undefined iff OJc2Kσ is undefined

Semantics and Verification of Software Summer Semester 2010 4



“Unwinding” of Loops

Simple application of statement equivalence: test of execution
condition in a while loop can be represented by an if statement

Lemma

For every b ∈ BExp and c ∈ Cmd,

while b do c ∼ if b then (c;while b do c) else skip.

Proof.

on the board

Semantics and Verification of Software Summer Semester 2010 5



Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,

AJ.K : AExp → (Σ → Z),

is given by:

AJzKσ := z AJa1+a2Kσ := AJa1Kσ + AJa2Kσ
AJxKσ := σ(x) AJa1-a2Kσ := AJa1Kσ − AJa2Kσ

AJa1*a2Kσ := AJa1Kσ ∗ AJa2Kσ

Semantics and Verification of Software Summer Semester 2010 6



Semantics of Boolean Expressions

Definition (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,

BJ.K : BExp → (Σ → B),

is given by:
BJtKσ := t

BJa1=a2Kσ :=

{

true if AJa1Kσ = AJa2Kσ
false otherwise

BJa1>a2Kσ :=

{

true if AJa1Kσ > AJa2Kσ
false otherwise

BJ¬bKσ :=

{

true if BJbKσ = false

false otherwise

BJb1 ∧ b2Kσ :=

{

true if BJb1Kσ = BJb2Kσ = true

false otherwise

BJb1 ∨ b2Kσ :=

{

false if BJb1Kσ = BJb2Kσ = false

true otherwise

Semantics and Verification of Software Summer Semester 2010 7



Semantics of Statements I

Now: semantic functional
CJ.K : Cmd → (Σ 99K Σ)

Same type as operational functional
OJ.K : Cmd → (Σ 99K Σ)

(in fact, both will turn out to be the same
=⇒ equivalence of operational and denotational semantics)

Inductive definition employs auxiliary functions:

identity on states: idΣ : Σ 99K Σ : σ 7→ σ

(strict) composition of partial state transformations:
◦ : (Σ 99K Σ) × (Σ 99K Σ) → (Σ 99K Σ)

where, for every f, g : Σ 99K Σ and σ ∈ Σ,

(g ◦ f)(σ) :=

{

g(f(σ)) if f(σ) defined
undefined otherwise

semantic conditional:
cond : (Σ → B) × (Σ 99K Σ) × (Σ 99K Σ) → (Σ 99K Σ)

where, for every p : Σ → B, f, g : Σ 99K Σ, and σ ∈ Σ,

cond(p, f, g)(σ) :=

{

f(σ) if p(σ) = true

g(σ) otherwise

Semantics and Verification of Software Summer Semester 2010 8



Semantics of Statements II

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Summer Semester 2010 9



Semantics of Statements III

Remarks:

Definition of CJcK given by induction on syntactic structure of
c ∈ Cmd

in particular, CJwhile b do cK only refers to BJbK and CJcK
(and not to CJwhile b do cK again)
note difference to OJcK:

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

In CJc1;c2K := CJc2K ◦ CJc1K, function composition ◦ has to be
strict since non-termination of c1 implies non-termination of c1;c2

(i.e., CJc1Kσ = undefined =⇒ CJc1;c2Kσ = undefined)

In CJwhile b do cK := fix(Φ), fix denotes a fixpoint operator
(which remains to be defined)
=⇒ “fixpoint semantics”

But: why fixpoints?

Semantics and Verification of Software Summer Semester 2010 10



Outline

1 Repetition: Operational and Denotational Semantics

2 Fixpoint Semantics of while Loop

3 Characterization of fix(Φ)

Semantics and Verification of Software Summer Semester 2010 11



Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 5.1)
Using the known parts of Def. 5.4, we obtain:

CJwhile b do cK

(∗)
= CJif b then (c;while b do c) else skipK

Def. 5.4
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 5.4
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
(since the equation can be stated as f = Φ(f))

Semantics and Verification of Software Summer Semester 2010 12



Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Existence: there does not need to exist any fixpoint. Examples:

1 φ1 : N → N : n 7→ n + 1 has no fixpoint

2 Φ1 : (Σ 99K Σ) → (Σ 99K Σ) : f 7→

{

g1 if f = g2

g2 otherwise
(where g1 6= g2) has no fixpoint

Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:

1 φ2 : N → N : n 7→ n3 has fixpoints {0, 1}
2 every state transformation f is a fixpoint of

Φ2 : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ f

Solution: uniqueness guaranteed by choosing a special fixpoint

Semantics and Verification of Software Summer Semester 2010 13



Outline

1 Repetition: Operational and Denotational Semantics

2 Fixpoint Semantics of while Loop

3 Characterization of fix(Φ)

Semantics and Verification of Software Summer Semester 2010 14



Characterization of fix(Φ) I

Let b ∈ BExp and c ∈ Cmd

Let Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)

Let f0 : Σ 99K Σ be a fixpoint of Φ, i.e., Φ(f0) = f0

Given some initial state σ0 ∈ Σ, we will distinguish the following
cases:

1 loop while b do c terminates after n iterations (n ∈ N)
2 body c diverges in the nth iteration

(since it contains a non-terminating while statement)
3 loop while b do c itself diverges

Semantics and Verification of Software Summer Semester 2010 15



Case 1: Termination of Loop

Loop while b do c terminates after n iterations (n ∈ N)

Formally: there exist σ1, . . . , σn ∈ Σ such that

BJbKσi =

{

true if 0 ≤ i < n

false if i = n
and

CJcKσi = σi+1 for every 0 ≤ i < n

Now the definition Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)
implies, for every 0 ≤ i < n,

Φ(f0)(σi) = (f0 ◦ CJcK)(σi) since BJbKσi = true

= f0(σi+1) and
Φ(f0)(σn) = σn since BJbKσn = false

Since Φ(f0) = f0 it follows that

f0(σi) =

{

f0(σi+1) if 0 ≤ i < n

σn if i = n

and hence
f0(σ0) = f0(σ1) = . . . f0(σn) = σn

=⇒ All fixpoints f0 coincide on σ0!

Semantics and Verification of Software Summer Semester 2010 16



Case 2: Divergence of Body

Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

Formally: there exist σ1, . . . , σn−1 ∈ Σ such that

BJbKσi = true for every 0 ≤ i < n and

CJcKσi =

{

σi+1 if 0 ≤ i ≤ n − 2
undefined if i = n − 1

Just as in the previous case (setting σn := undefined) it follows
that

f0(σ0) = undefined

=⇒ Again all fixpoints f0 coincide on σ0!

Semantics and Verification of Software Summer Semester 2010 17



Case 3: Divergence of Loop

Loop while b do c diverges

Formally: there exist σ1, σ2, . . . ∈ Σ such that

BJbKσi = true and
CJcKσi = σi+1 for every i ∈ N

Here only derivable:

f0(σ0) = f0(σi) for every i ∈ N

=⇒ Value of f0(σ0) not determined!

Semantics and Verification of Software Summer Semester 2010 18



Summary

For Φ(f0) = f0 and initial state σ0 ∈ Σ, case distinction yields:
1 Loop while b do c terminates after n iterations (n ∈ N)

=⇒ f0(σ0) = σn

2 Body c diverges in the nth iteration
=⇒ f0(σ0) = undefined

3 Loop while b do c diverges
=⇒ no condition on f0 (only f0(σ0) = f0(σi) for every i ∈ N)

Not surprising since, e.g., the loop while true do skip yields for
every f : Σ 99K Σ:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

On the other hand, our operational understanding requires, for
every σ0 ∈ Σ,

CJwhile true do skipKσ0 = undefined

Conclusion

fix(Φ) is the least defined fixpoint of Φ.

Semantics and Verification of Software Summer Semester 2010 19



Making it Precise I

To use fixpoint theory, the notion of “least defined” has to be made
precise.

Given f, g : Σ 99K Σ, let

f v g ⇐⇒ for every σ, σ′ ∈ Σ : f(σ) = σ′ =⇒ g(σ) = σ′

(g is “at least as defined” as f)

Equivalent to requiring

graph(f) ⊆ graph(g)

where

graph(h) := {(σ, σ′) | σ ∈ Σ, σ′ = h(σ) defined} ⊆ Σ × Σ

for every h : Σ 99K Σ

Semantics and Verification of Software Summer Semester 2010 20



Making it Precise II

Example 6.1

Let x ∈ Var be fixed, and let f0, f1, f2, f3 : Σ 99K Σ be given by

f0(σ) := undefined

f1(σ) :=

{

σ if σ(x) even
undefined otherwise

f2(σ) :=

{

σ if σ(x) odd
undefined otherwise

f3(σ) := σ

This implies f0 v f1 v f3, f0 v f2 v f3, f1 6v f2, and f2 6v f1

Semantics and Verification of Software Summer Semester 2010 21



Characterization of fix(Φ) II

Now fix(Φ) can be characterized by:

fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

fix(Φ) is minimal with respect to v, i.e., for every f0 : Σ 99K Σ
such that Φ(f0) = f0,

fix(Φ) v f0

Example 6.2

For while true do skip we obtain for every f : Σ 99K Σ:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

=⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ
(that is, graph(f∅) = ∅)

Semantics and Verification of Software Summer Semester 2010 22



Characterization of fix(Φ) III

Goals:

Prove existence of fix(Φ) for Φ(f) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity

Semantics and Verification of Software Summer Semester 2010 23


	Repetition: Operational and Denotational Semantics
	Fixpoint Semantics of while Loop
	Characterization of fix()

