
Semantics and Verification of Software

Lecture 7: Denotational Semantics of WHILE II
(Chain-Complete Partial Orders)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/


Outline

1 Repetition: Fixpoint Semantics of while Loop

2 Chain-Complete Partial Orders

Semantics and Verification of Software Summer Semester 2010 2



Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Summer Semester 2010 3



Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 5.1)
Using the known parts of Def. 5.4, we obtain:

CJwhile b do cK

(∗)
= CJif b then (c;while b do c) else skipK

Def. 5.4
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 5.4
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
(since the equation can be stated as f = Φ(f))

Semantics and Verification of Software Summer Semester 2010 4



Characterization of fix(Φ) I

For Φ(f0) = f0 and initial state σ0 ∈ Σ, case distinction yields:
1 Loop while b do c terminates after n iterations (n ∈ N)

=⇒ f0(σ0) = σn

2 Body c diverges in the nth iteration
=⇒ f0(σ0) = undefined

3 Loop while b do c diverges
=⇒ no condition on f0 (only f0(σ0) = f0(σi) for every i ∈ N)

Not surprising since, e.g., the loop while true do skip yields for
every f : Σ 99K Σ:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

On the other hand, our operational understanding requires, for
every σ0 ∈ Σ,

CJwhile true do skipKσ0 = undefined

Conclusion

fix(Φ) is the least defined fixpoint of Φ.

Semantics and Verification of Software Summer Semester 2010 5



Making it Precise

To use fixpoint theory, the notion of “least defined” has to be made
precise.

Given f, g : Σ 99K Σ, let

f v g ⇐⇒ for every σ, σ′ ∈ Σ : f(σ) = σ′ =⇒ g(σ) = σ′

(g is “at least as defined” as f)

Equivalent to requiring

graph(f) ⊆ graph(g)

where

graph(h) := {(σ, σ′) | σ ∈ Σ, σ′ = h(σ) defined} ⊆ Σ × Σ

for every h : Σ 99K Σ

Semantics and Verification of Software Summer Semester 2010 6



Characterization of fix(Φ) II

Now fix(Φ) can be characterized by:

fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

fix(Φ) is minimal with respect to v, i.e., for every f0 : Σ 99K Σ
such that Φ(f0) = f0,

fix(Φ) v f0

Example

For while true do skip we obtain for every f : Σ 99K Σ:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

=⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ
(that is, graph(f∅) = ∅)

Semantics and Verification of Software Summer Semester 2010 7



Characterization of fix(Φ) III

Goals:

Prove existence of fix(Φ) for Φ(f) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity

Semantics and Verification of Software Summer Semester 2010 8



Outline

1 Repetition: Fixpoint Semantics of while Loop

2 Chain-Complete Partial Orders

Semantics and Verification of Software Summer Semester 2010 9



Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Semantics and Verification of Software Summer Semester 2010 10



Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 7.2

1 (N,≤) is a total partial order

Semantics and Verification of Software Summer Semester 2010 10



Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 7.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

Semantics and Verification of Software Summer Semester 2010 10



Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 7.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

3 (N, <) is not a partial order

Semantics and Verification of Software Summer Semester 2010 10



Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 7.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

3 (N, <) is not a partial order (since not reflexive)

Semantics and Verification of Software Summer Semester 2010 10



Application to fix(Φ) I

Lemma 7.3

(Σ 99K Σ,v) is a partial order.

Semantics and Verification of Software Summer Semester 2010 11



Application to fix(Φ) I

Lemma 7.3

(Σ 99K Σ,v) is a partial order.

Proof.

on the board

Semantics and Verification of Software Summer Semester 2010 11



Chains and Least Upper Bounds

Definition 7.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).

Semantics and Verification of Software Summer Semester 2010 12



Chains and Least Upper Bounds

Definition 7.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).

Semantics and Verification of Software Summer Semester 2010 12



Chains and Least Upper Bounds

Definition 7.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d v d′ for every upper bound d′ of S

(notation: d = tS).

Semantics and Verification of Software Summer Semester 2010 12



Chains and Least Upper Bounds

Definition 7.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d v d′ for every upper bound d′ of S

(notation: d = tS).

Example 7.5

1 Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.

Semantics and Verification of Software Summer Semester 2010 12



Chains and Least Upper Bounds

Definition 7.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d v d′ for every upper bound d′ of S

(notation: d = tS).

Example 7.5

1 Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.

2 {∅, {0}, {0, 1}, . . .} is a chain in (2N,⊆) with LUB N.

Semantics and Verification of Software Summer Semester 2010 12



Chain Completeness

Definition 7.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Semantics and Verification of Software Summer Semester 2010 13



Chain Completeness

Definition 7.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Example 7.7

1 (2N,⊆) is a CCPO with tS =
⋃

M∈S M for every chain S ⊆ 2N.

Semantics and Verification of Software Summer Semester 2010 13



Chain Completeness

Definition 7.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Example 7.7

1 (2N,⊆) is a CCPO with tS =
⋃

M∈S M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete

Semantics and Verification of Software Summer Semester 2010 13



Chain Completeness

Definition 7.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Example 7.7

1 (2N,⊆) is a CCPO with tS =
⋃

M∈S M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete
(since, e.g., the chain N has no upper bound).

Semantics and Verification of Software Summer Semester 2010 13



Least Elements in CCPOs

Corollary 7.8

Every CCPO has a least element t∅.

Semantics and Verification of Software Summer Semester 2010 14



Least Elements in CCPOs

Corollary 7.8

Every CCPO has a least element t∅.

Proof.

Let (D,v) be a CCPO.

By definition, ∅ is a chain in D.

Semantics and Verification of Software Summer Semester 2010 14



Least Elements in CCPOs

Corollary 7.8

Every CCPO has a least element t∅.

Proof.

Let (D,v) be a CCPO.

By definition, ∅ is a chain in D.

By definition, every d ∈ D is an upper bound of ∅.

Semantics and Verification of Software Summer Semester 2010 14



Least Elements in CCPOs

Corollary 7.8

Every CCPO has a least element t∅.

Proof.

Let (D,v) be a CCPO.

By definition, ∅ is a chain in D.

By definition, every d ∈ D is an upper bound of ∅.

Thus t∅ exists and is the least element of D.

Semantics and Verification of Software Summer Semester 2010 14



Application to fix(Φ) II

Lemma 7.9

(Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.

In particular, for every chain S ⊆ Σ 99K Σ,

graph (tS) =
⋃

f∈S

graph(f).

Semantics and Verification of Software Summer Semester 2010 15



Application to fix(Φ) II

Lemma 7.9

(Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.

In particular, for every chain S ⊆ Σ 99K Σ,

graph (tS) =
⋃

f∈S

graph(f).

Proof.

on the board

Semantics and Verification of Software Summer Semester 2010 15


	Repetition: Fixpoint Semantics of while Loop
	Chain-Complete Partial Orders

