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Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
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Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 5.1)
Using the known parts of Def. 5.4, we obtain:

CJwhile b do cK

(∗)
= CJif b then (c;while b do c) else skipK

Def. 5.4
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 5.4
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
(since the equation can be stated as f = Φ(f))
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Characterization of fix(Φ) I

For Φ(f0) = f0 and initial state σ0 ∈ Σ, case distinction yields:
1 Loop while b do c terminates after n iterations (n ∈ N)

=⇒ f0(σ0) = σn

2 Body c diverges in the nth iteration
=⇒ f0(σ0) = undefined

3 Loop while b do c diverges
=⇒ no condition on f0 (only f0(σ0) = f0(σi) for every i ∈ N)

Not surprising since, e.g., the loop while true do skip yields for
every f : Σ 99K Σ:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

On the other hand, our operational understanding requires, for
every σ0 ∈ Σ,

CJwhile true do skipKσ0 = undefined

Conclusion

fix(Φ) is the least defined fixpoint of Φ.
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Making it Precise

To use fixpoint theory, the notion of “least defined” has to be made
precise.

Given f, g : Σ 99K Σ, let

f v g ⇐⇒ for every σ, σ′ ∈ Σ : f(σ) = σ′ =⇒ g(σ) = σ′

(g is “at least as defined” as f)

Equivalent to requiring

graph(f) ⊆ graph(g)

where

graph(h) := {(σ, σ′) | σ ∈ Σ, σ′ = h(σ) defined} ⊆ Σ × Σ

for every h : Σ 99K Σ
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Characterization of fix(Φ) II

Now fix(Φ) can be characterized by:

fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

fix(Φ) is minimal with respect to v, i.e., for every f0 : Σ 99K Σ
such that Φ(f0) = f0,

fix(Φ) v f0

Example

For while true do skip we obtain for every f : Σ 99K Σ:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

=⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ
(that is, graph(f∅) = ∅)
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Characterization of fix(Φ) III

Goals:

Prove existence of fix(Φ) for Φ(f) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity
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Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.
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Definition 7.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 7.2

1 (N,≤) is a total partial order
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Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of
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Example 7.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order
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Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of
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1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

3 (N, <) is not a partial order
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Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of
a relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 7.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

3 (N, <) is not a partial order (since not reflexive)
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Application to fix(Φ) I

Lemma 7.3

(Σ 99K Σ,v) is a partial order.
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Application to fix(Φ) I

Lemma 7.3

(Σ 99K Σ,v) is a partial order.

Proof.

on the board
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Chains and Least Upper Bounds

Definition 7.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
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Chains and Least Upper Bounds

Definition 7.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).
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Chains and Least Upper Bounds

Definition 7.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d v d′ for every upper bound d′ of S

(notation: d = tS).
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Chains and Least Upper Bounds

Definition 7.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d v d′ for every upper bound d′ of S

(notation: d = tS).

Example 7.5

1 Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.
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Chains and Least Upper Bounds

Definition 7.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d v d′ for every upper bound d′ of S

(notation: d = tS).

Example 7.5

1 Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.

2 {∅, {0}, {0, 1}, . . .} is a chain in (2N,⊆) with LUB N.
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Chain Completeness

Definition 7.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.
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Chain Completeness

Definition 7.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Example 7.7

1 (2N,⊆) is a CCPO with tS =
⋃

M∈S M for every chain S ⊆ 2N.
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Chain Completeness

Definition 7.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Example 7.7

1 (2N,⊆) is a CCPO with tS =
⋃

M∈S M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete
(since, e.g., the chain N has no upper bound).
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Least Elements in CCPOs

Corollary 7.8

Every CCPO has a least element t∅.
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Least Elements in CCPOs

Corollary 7.8

Every CCPO has a least element t∅.

Proof.

Let (D,v) be a CCPO.

By definition, ∅ is a chain in D.
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Least Elements in CCPOs

Corollary 7.8

Every CCPO has a least element t∅.

Proof.

Let (D,v) be a CCPO.

By definition, ∅ is a chain in D.

By definition, every d ∈ D is an upper bound of ∅.
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Least Elements in CCPOs

Corollary 7.8

Every CCPO has a least element t∅.

Proof.

Let (D,v) be a CCPO.

By definition, ∅ is a chain in D.

By definition, every d ∈ D is an upper bound of ∅.

Thus t∅ exists and is the least element of D.
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Application to fix(Φ) II

Lemma 7.9

(Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.

In particular, for every chain S ⊆ Σ 99K Σ,

graph (tS) =
⋃

f∈S

graph(f).
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