Semantics and Verification of Software

Lecture 7: Denotational Semantics of WHILE 11
(Chain-Complete Partial Orders)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Repetition: Fixpoint Semantics of while Loop

Rm Semantics and Verification of Software Summer Semester 2010



Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,
€[] : Cmd — (£ --» %),
is given by:
C[skip] := idy
Clz :=a]o = o[z — Aa]o]
Q:[[Cl;CQ]] = Q:[[Cg]] o Q:[[Cl]]

C[if b then ¢; else 3] := cond(B[b], €[c1], C[c2])
¢[while b do c] := fix(®)

where @ : (¥ --» X) — (X --» X) : f > cond(B[b], f o €[], ids)

m' Semantics and Verification of Software Summer Semester 2010



Why Fixpoints?

o Goal: preserve validity of equivalence

¢[while b do (] © C[if b then (c;while b do ¢) else skip]
(cf. Lemma 5.1)
Using the known parts of Def. 5.4, we obtain:
¢[while b do (]
o ¢[if b then (c;while b do c¢) else skip]
Del.5-4 cond(B[b], €[c;while b do ], €[skip])

cond(B[b], €[while b do ] o €[c],idx)

(2

Def. 5.4

©

Abbreviating f := €[while b do c] this yields:
f = cond(B[b], f o €[c],idx)
Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping
O:(X--+3)—= (X --+3): f— cond(B[b], f o €[], idy)
(since the equation can be stated as f = ®(f))

m' Semantics and Verification of Software Summer Semester 2010

¢ ¢




Characterization of fix(®) I

For ®(fy) = fo and initial state o9 € X, case distinction yields:
@ Loop while b do ¢ terminates after n iterations (n € N)
= fo (UO) = 0On
© Body c diverges in the nth iteration
= fo(op) = undefined
© Loop while b do c diverges
= no condition on fy (only fo(og) = fo(o;) for every i € N)

o Not surprising since, e.g., the loop while true do skip yields for
every f: X --» 3
®(f) = cond(B[true], f o €[skip],ids) = f
@ On the other hand, our operational understanding requires, for
every og € X,
¢[while true do skip]op = undefined

fix(®) is the least defined fixpoint of ®.

m' Semantics and Verification of Software Summer Semester 2010



Making it Precise

To use fixpoint theory, the notion of “least defined” has to be made
precise.

o Given f,g:% -—» X, let

/

fCg < foreveryo,0' €X: f(o)=0 = g(o)=0

(g is “at least as defined” as f)

o Equivalent to requiring
graph(f) C graph(g)
where
graph(h) := {(0,0") | 0 € 3,0’ = h(o) defined} C ¥ x ¥

for every h: 3 --+ X

Rm Semantics and Verification of Software Summer Semester 2010



Characterization of fix(®) IT

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,

O(fix(D)) = fix(®)

o fix(®) is minimal with respect to C, i.e., for every fo: X --+ X
such that ®(fy) = fo,
fix(®) C fo

Example

For while true do skip we obtain for every f: 3 --» 3:
®(f) = cond(B[true], f o €[skip],idy) = f

= fix(®) = fy where fy(o) := undefined for every o € ¥
(that is, graph(fg) = 0)

Semantics and Verification of Software Summer Semester 2010



Characterization of fix(®) ITI

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c],idsx)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain Y --+ X: chain-complete partial order

on function ®: continuity

Rm Semantics and Verification of Software Summer Semester 2010



© Chain-Complete Partial Orders

Rm Semantics and Verification of Software Summer Semester 2010



Partial Orders

Definition 7.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of
a relation C C D x D such that, for every dy,ds,ds € D,

reflexivity: dy C d;
transitivity: di C do and do E d3 = d; C d3
antisymmetry: d; E do and do C diy = di = do
It is called total if, in addition, always dy C dy or do C dj.

Q (N, <) is a total partial order
@ (2V,C) is a (non-total) partial order

@ (N, <) is not a partial order (since not reflexive)

m' Semantics and Verification of Software Summer Semester 2010 10



Application to fix(®) I

(X --» X,0) is a partial order.

on the board O

m' Semantics and Verification of Software Summer Semester 2010 11



Chains and Least Upper Bounds

Definition 7.4 (Chain, (least) upper bound)

Let (D,C) be a partial order and S C D.

@ S is called a chain in D if, for every s1,s2 € S,
s1 E sgor sy C sy
(that is, S is a totally ordered subset of D).
© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).
© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d E d’ for every upper bound d’ of S
(notation: d = LIS).

@ Every subset S C N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.
Q {0,{0},{0,1},...} is a chain in (2, C) with LUB N.

m Semantics and Verification of Software Summer Semester 2010 12



Chain Completeness

Definition 7.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Q (2V,C) is a CCPO with US = [J,;eg M for every chain S C 2N,

@ (N, <) is not chain complete
(since, e.g., the chain N has no upper bound).

m' Semantics and Verification of Software Summer Semester 2010



Least Elements in CCPOs

Every CCPO has a least element ).

Let (D,C) be a CCPO.
@ By definition, ) is a chain in D.

@ By definition, every d € D is an upper bound of 0.

o Thus LIf) exists and is the least element of D.

m Semantics and Verification of Software Summer Semester 2010 14



Application to fix(®) II

Lemma 7.9

o (X --»X,C) is a CCPO with least element fy where graph(fy) = 0.
o In particular, for every chain S C ¥ --» X,

graph (LS) U graph(f
fes

on the board O l

Semantics and Verification of Software Summer Semester 2010 15



	Repetition: Fixpoint Semantics of while Loop
	Chain-Complete Partial Orders

