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Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ) → (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
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Characterization of fix(Φ) II

Now fix(Φ) can be characterized by:

fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

fix(Φ) is minimal with respect to v, i.e., for every f0 : Σ 99K Σ
such that Φ(f0) = f0,

fix(Φ) v f0

Example

For while true do skip we obtain for every f : Σ 99K Σ:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

=⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ
(that is, graph(f∅) = ∅)
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Characterization of fix(Φ) III

Goals:

Prove existence of fix(Φ) for Φ(f) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity
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Chains and Least Upper Bounds I

Definition (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d v d′ for every upper bound d′ of S
(notation: d = tS).
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Chains and Least Upper Bounds II

Example

1 Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.

2 {∅, {0}, {0, 1}, . . .} is a chain in (2N,⊆) with LUB N.

3 Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi(σ) :=

{

σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then {f0, f1, f2, . . .} is a chain in (Σ 99K Σ,v), since for every
i ∈ N and σ, σ′ ∈ Σ:

fi(σ) = σ′

=⇒ σ(x) ≤ i, σ′ = σ[x 7→ σ(x) + 1]
=⇒ σ(x) ≤ i + 1, σ′ = σ[x 7→ σ(x) + 1]
=⇒ fi+1(σ) = σ′

=⇒ fi v fi+1
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Chain Completeness

Definition (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Example

1 (2N,⊆) is a CCPO with tS =
⋃

M∈S M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete
(since, e.g., the chain N has no upper bound).
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Application to fix(Φ)

Lemma

(Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.

In particular, for every chain S ⊆ Σ 99K Σ,

graph (tS) =
⋃

f∈S

graph(f).

Proof.

on the board

Example

Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi(σ) :=

{

σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then t{f0, f1, f2, . . .} = f where
f : Σ → Σ : σ 7→ σ[x 7→ σ(x) + 1]
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Monotonicity I

Definition 8.1 (Monotonicity)

Let (D,v) and (D′,v′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ F (d1) v
′ F (d2).

Interpretation: monotonic functions “preserve information”

Example 8.2

1 Let T := {S ⊆ N | S finite}. Then F1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 F2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but F2(∅) = N 6⊆ F2(N) = ∅).
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Application to fix(Φ)

Lemma 8.3

Let b ∈ BExp, c ∈ Cmd, and Φ : (Σ 99K Σ) → (Σ 99K Σ) with

Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ is monotonic w.r.t.

(Σ 99K Σ,v).

Proof.

on the board
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Monotonicity II

The following lemma states how chains behave under monotonic
functions.

Lemma 8.4

Let (D,v) and (D′,v′) be CCPOs, F : D → D′ monotonic, and S ⊆ D
a chain in D. Then:

1 F (S) := {F (d) | d ∈ S} is a chain in D′.

2 tF (S) v′ F (tS).

Proof.

on the board
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Continuity

A function F is continuous if applying F and taking LUBs can be
exchanged:

Definition 8.5 (Continuity)

Let (D,v) and (D′,v′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,v) and (D′,v′)) if, for every
non-empty chain S ⊆ D,

F (tS) = tF (S).

Lemma 8.6

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ
is continuous w.r.t. (Σ 99K Σ,v).

Proof.

omitted
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The Fixpoint Theorem

Theorem 8.7 (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) := t{Fn (t∅) | n ∈ N}

is the least fixpoint of F where

F 0(d) := d and Fn+1(d) := F (Fn(d)).

Proof.

on the board (later)
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Application to fix(Φ)

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary 8.8

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃

n∈N

graph(Φn(f∅))

Proof.

Using

Lemma 7.9

(Σ 99K Σ,v) CCPO with least element f∅
LUB = union of graphs

Lemma 8.6 (Φ continuous)

Theorem 8.7 (Fixpoint Theorem)

Semantics and Verification of Software Summer Semester 2010 17



Outline

1 Repetition: Chain-Complete Partial Orders

2 Monotonic and Continuous Functions

3 The Fixpoint Theorem

4 An Example

5 Summary: Denotational Semantics

Semantics and Verification of Software Summer Semester 2010 18



Denotational Semantics of Factorial Program I

Example 8.9 (Factorial program)

Let c ∈ Cmd be given by
y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)

For every initial state σ0 ∈ Σ, Def. 5.4 yields:
CJcK(σ0) = fix(Φ)(σ1)

where σ1 := σ0[y 7→ 1] and, for every f : Σ 99K Σ and σ ∈ Σ,
Φ(f)(σ) = cond(BJ¬(x=1)K, f ◦ CJy:=y*x; x:=x-1K, idΣ)(σ)

=

{

σ if σ(x) = 1
f(σ′) otherwise

with σ′ := σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x) − 1].

Approximations of least fixpoint of Φ according to Theorem 8.7:
fix(Φ) = t{Φn(f∅) | n ∈ N}

(where graph(f∅) = ∅)
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Denotational Semantics of Factorial Program II

Example 8.9 (Factorial program; continued)

f0(σ) := Φ0(f∅)(σ)
= f∅(σ)
= undefined

f1(σ) := Φ1(f∅)(σ)
= Φ(f0)(σ)

=

{

σ if σ(x) = 1
f0(σ

′) otherwise

=

{

σ if σ(x) = 1
undefined otherwise

f2(σ) := Φ2(f∅)(σ)
= Φ(f1)(σ)

=

{

σ if σ(x) = 1
f1(σ

′) otherwise

=







σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
undefined if σ(x) 6= 1 and σ′(x) 6= 1

=







σ if σ(x) = 1
σ′ if σ(x) = 2
undefined if σ(x) 6= 1 and σ(x) 6= 2

=



















σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y),
x 7→ 1]

if σ(x) = 2

undefined if σ(x) 6= 1
and σ(x) 6= 2
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Denotational Semantics of Factorial Program III

Example 8.9 (Factorial program; continued)

f3(σ) := Φ3(f∅)(σ)
= Φ(f2)(σ)

=

{

σ if σ(x) = 1
f2(σ

′) otherwise

=











σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
σ′[y 7→ 2 ∗ σ′(y), x 7→ 1] if σ(x) 6= 1 and σ′(x) = 2
undefined if σ(x) 6= 1 and σ′(x) 6= 1 and σ′(x) 6= 2

=











σ if σ(x) = 1
σ′ if σ(x) = 2
σ′[y 7→ 2 ∗ σ′(y), x 7→ 1] if σ(x) = 3
undefined if σ(x) /∈ {1, 2, 3}

=











σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y), x 7→ 1] if σ(x) = 2
σ[y 7→ 3 ∗ 2 ∗ σ(y), x 7→ 1] if σ(x) = 3
undefined if σ(x) /∈ {1, 2, 3}
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Denotational Semantics of Factorial Program IV

Example 8.9 (Factorial program; continued)

n-th approximation:

fn(σ)
:= Φn(f∅)(σ)

=







σ[y 7→ σ(x) ∗ (σ(x) − 1) ∗ . . . ∗ 2 ∗ σ(y),
x 7→ 1]

if 1 ≤ σ(x) ≤ n

undefined if σ(x) /∈ {1, . . . , n}

=

{

σ[y 7→ (σ(x))! ∗ σ(y), x 7→ 1] if 1 ≤ σ(x) ≤ n
undefined if σ(x) /∈ {1, . . . , n}

Fixpoint:

CJcK(σ0) = fix(Φ)(σ1) =

{

σ[y 7→ (σ(x))!, x 7→ 1] if σ(x) ≥ 1
undefined otherwise
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Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration
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