Semantics and Verification of Software

Lecture 8: Denotational Semantics of WHILE 111
(Continuous Functions and Fixpoint Theorem)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ Repetition: Chain-Complete Partial Orders

Rm Semantics and Verification of Software Summer Semester 2010

Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,
€[] : Cmd — (£ --» %),
is given by:
C[skip] := idy
Clz :=a]o = o[z — Aa]o]
Q:[[Cl;CQ]] = Q:[[Cg]] o Q:[[Cl]]

C[if b then ¢; else 3] := cond(B[b], €[c1], C[c2])
¢[while b do c] := fix(®)

where @ : (¥ --» X) — (X --» X) : f > cond(B[b], f o €[], ids)

m' Semantics and Verification of Software Summer Semester 2010

Characterization of fix(®) IT

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,

O(fix(D)) = fix(®)

o fix(®) is minimal with respect to C, i.e., for every fo: X --+ X
such that ®(fy) = fo,
fix(®) C fo

Example

For while true do skip we obtain for every f: 3 --» 3:
®(f) = cond(B[true], f o €[skip],idy) = f

= fix(®) = fy where fy(o) := undefined for every o € ¥
(that is, graph(fg) = 0)

Semantics and Verification of Software Summer Semester 2010

Characterization of fix(®) ITI

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c],idsx)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain Y --+ X: chain-complete partial order

on function ®: continuity

Rm Semantics and Verification of Software Summer Semester 2010

Chains and Least Upper Bounds I

Definition (Chain, (least) upper bound)

Let (D,C) be a partial order and S C D.

@ S is called a chain in D if, for every s, s9 € S,
51 & sp or 53 & 51
(that is, S is a totally ordered subset of D).
© An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).
© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d E d’ for every upper bound d’ of S
(notation: d = LIS).

m Semantics and Verification of Software Summer Semester 2010

Chains and Least Upper Bounds I1

Q Every subset S C N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.
9 {0,{0},{0,1},...} is a chain in (2V, C) with LUB N.

© Let z € Var, and let f; : X --» X for every ¢ € N be given by

olx—o(x)+1] ifo(z)<i
undefined otherwise

fi(o) == {

Then {fo, f1, f2,...} is a chain in (¥ --» X, C), since for every
1€ Nand o,0’ € X:

= o(x) §:71, o' =olx— o(z)+1]
= o(x) <i+ 1,0/ =0z o(x)+1]
= fiqa(o) =o'

— fiC fin

Semantics and Verification of Software Summer Semester 2010

Chain Completeness

Definition (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Q (2V,C) is a CCPO with US = [J,;eg M for every chain S C 2N,

@ (N, <) is not chain complete
(since, e.g., the chain N has no upper bound).

m' Semantics and Verification of Software Summer Semester 2010

Application to fix(®)

o (X --»X,0) is a CCPO with least element fy where graph(fy) = 0.

o In particular, for every chain S C % --» X,

graph (US) = U graph(f).
fes

on the board O

Example

Let x € Var, and let f; : X --» 3 for every 7 € N be given by
fi(o) = olz—o(x)+1] ifo(z)<i
9= | undefined otherwise

Then L fo, f1, f2,...} = f where
f:X—=XY:0m 0oz o(x)+1]

Semantics and Verification of Software Summer Semester 2010

© Monotonic and Continuous Functions

Rm Semantics and Verification of Software Summer Semester 2010 10

Monotonicity I

Definition 8.1 (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let F': D — D'. F'is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,ds € D,

d1 C d2 — F(dl) E/ F(dg)

Interpretation: monotonic functions “preserve information”

Example 8.2

Q Let T:={S CN| S finite}. Then F; : T - N:S— 3 _gnis
monotonic w.r.t. (2, C) and (N, <).

Q :2Y -2V 8+ N\ S is not monotonic w.r.t. (2, C)
(since, e.g., # C€ N but F5(0) = N € F5(N) = ().

m' Semantics and Verification of Software Summer Semester 2010

Application to fix(®)

Let b € BExp, c € Cmd, and @ : (X --») — (X --» X) with
®(f) := cond(B[[b], f o €[c],idx). Then ® is monotonic w.r.t.
(E == E’ E)

on the board O l

m' Semantics and Verification of Software Summer Semester 2010 12

Monotonicity 11

The following lemma states how chains behave under monotonic
functions.

Let (D,C) and (D',C") be CCPOs, F : D — D' monotonic, and S C D
a chain in D. Then:

Q F(S):={F(d)|de S} is a chain in D'.
Q LUF(S) T F(US).

on the board O l

m Semantics and Verification of Software Summer Semester 2010 13

Continuity

A function F' is continuous if applying F' and taking LUBs can be
exchanged:

Definition 8.5 (Continuity)

Let (D,C) and (D’,C') be CCPOs and F : D — D’ monotonic. Then
F is called continuous (w.r.t. (D,C) and (D’,C)) if, for every
non-empty chain S C D,

F (US)=UF(S).

A,

Lemma 8.6

Let b € BExp, ¢ € Cmd, and ®(f) := cond(B[b], f o €[c],idx). Then
is continuous w.r.t. (X --» X,).

omitted O
RWNTH

Semantics and Verification of Software Summer Semester 2010 14

© The Fixpoint Theorem

Rm Semantics and Verification of Software Summer Semester 2010 15

The Fixpoint Theorem

Theorem 8.7 (Fixpoint Theorem by Tarski and Knaster)
Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) :=U{F" (U0) | n € N}
1s the least fizpoint of F' where

F%(d) := d and F"TY(d) := F(F"(d)).

on the board (later)

m' Semantics and Verification of Software Summer Semester 2010 16

Application to fix(®)

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Corollary 8.8

Let b € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],ids). Then

graph(fix(® U graph(®"(fy))
neN

Proof
Using
o Lemma 7.9

o (X --»3,C) CCPO with least element fj
o LUB = union of graphs

@ Lemma 8.6 (® continuous)

@ Theorem 8.7 (Fixpoint Theorem)

m' Semantics and Verification of Software Summer Semester 2010 17

@ An Example

Rm mantics and Verification of Software Summer Semester

Denotational Semantics of Factorial Program I

Example 8.9 (Factorial program)

o Let ¢c € Umd be given by
y:=1; while —(x=1) do (y:=y*x; x:=x-1)
o For every initial state og € 3, Def. 5.4 yields:
el (o) = fix(@) ()
where 01 := og[y — 1] and, for every f: ¥ --» ¥ and 0 € X,
D(f)(0) = cond(B[-~(x=1)], f o €[y :=y*x; x:=x-1],idx)(0)
o ifo(x)=1
f(o’) otherwise
with o/ := oy — o(y) * 0(x),x — o(x) — 1].

o Approximations of least fixpoint of ¢ according to Theorem 8.7:
fix(®) = L{®"(fy) | n € N}
(where graph(fy) = 0)

m' Semantics and Verification of Software Summer Semester 2010 19

Denotational Semantics of Factorial Program II

Example 8.9 (Factorial program; continued)

falo) = ©(fy)(0)
— (f1)(0)
fo(o) := @°(fy)(0) _ {U ifo(x)=1
= fo(o) fi(c’") otherwise
= undefined o if o(x) =1
=<{d if o(x) #1 and o/(x) =1
undefined if o(x) # 1 and o'(x) # 1
fi(o) = @1(fo)(o ifo(x) =1
= @(fo) =<0 if o(x) =2
o 1f o(x) =1 undefined if o(x) # 1 and o(x) # 2
fola’) otherw1se o if o(x) =
@ ifo(x) =1 oly— 2x0(y), ifo(x)=2
undefined otherwise = x 1]
undefined if o(x) #1
and o(x) # 2

m' Semantics and Verification of Software Summer Semester 2010

Denotational Semantics of Factorial Program III

Example 8.9 (Factorial program; continued)

f3(0) == 2%(fy)(0)
= 0(f2)(0)

U ifo(x)=1

f (¢') otherwise

o ifo(x)=1

o if o(x) #1 and o'(x) =1
dly—2*d(y),x—1] ifo(x)#1ando'(x)=2

undeﬁned if 0(x) # 1 and ¢/(x) # 1 and o/ (x) # 2

o ifo(x) =1

o’ if o(x) =2

{ ly—2x0'(y),x—1] ifo(x)=3

undefined if o(x) ¢ {1,2,3}

o ifo(x)=1
oly = 2x0(y),x 1] if o(x) =2
oly—3%2x0(y),x— 1] ifo(x)=3

undefined if o(x) ¢ {1,2,3}

m' Semantics and Verification of Software Summer Semester 2010 21

Denotational Semantics of Factorial Program IV

Example 8.9 (Factorial program; continued)

@ n-th approximation:
fn(9)
= o"(
y|—>a (c(x) =D *...x2x0(y), ifl1<o(x)<n
X — 1]
undeﬁned if o(x) ¢ {1,...,n}
)Nxo(y),x—1] ifl1<o(x)<n
N undeﬁned ifo(x) ¢ {1,...,n}
o Fixpoint:
. oly— (c(x),x— 1] ifo(x)>1
¢lel(o0) = fix(®)(01) = {m[ileﬁn(ed()) e

m' Semantics and Verification of Software Summer Semester 2010

© Summary: Denotational Semantics

Rm Semantics and Verification of Software Summer Semester 2010

Summary: Denotational Semantics

Semantic model: partial state transformations (X --» 3)
Compositional definition of functional €[.] : Cmd — (¥ --» X)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration

Rm Semantics and Verification of Software Summer Semester 2010

	Repetition: Chain-Complete Partial Orders
	Monotonic and Continuous Functions
	The Fixpoint Theorem
	An Example
	Summary: Denotational Semantics

