
Semantics and Verification of Software
Lecture 9: Equivalence of Operational and Denotational

Semantics

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/


Exam

In oral form

By appointment (e-mail):

second half of July or
beginning of September to mid-October

Registration:

Diplom: (V)ZPA
Master: CampusOffice by May 28

Semantics and Verification of Software Summer Semester 2010 2



Outline

1 Repetition: The Fixpoint Theorem

2 Equivalence of Operational and Denotational Semantics

3 The Axiomatic Approach

4 The Assertion Language

Semantics and Verification of Software Summer Semester 2010 3



Characterization of fix(Φ)

Goals:

Prove existence of fix(Φ) for Φ(f) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity

Semantics and Verification of Software Summer Semester 2010 4



Chain Completeness

Definition (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Example

1 (2N,⊆) is a CCPO with tS =
⋃

M∈S
M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete
(since, e.g., the chain N has no upper bound).

Semantics and Verification of Software Summer Semester 2010 5



Monotonicity

Definition (Monotonicity)

Let (D,v) and (D′,v′) be partial orders, and let F : D → D′. F is
called monotonic (w.r.t. (D,v) and (D′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ F (d1) v
′ F (d2).

Interpretation: monotonic functions “preserve information”

Example

1 Let T := {S ⊆ N | S finite}. Then F1 : T → N : S 7→
∑

n∈S
n is

monotonic w.r.t. (2N,⊆) and (N,≤).

2 F2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but F2(∅) = N 6⊆ F2(N) = ∅).

Semantics and Verification of Software Summer Semester 2010 6



Continuity

A function F is continuous if applying F and taking LUBs can be
exchanged:

Definition (Continuity)

Let (D,v) and (D′,v′) be CCPOs and F : D → D′ monotonic. Then
F is called continuous (w.r.t. (D,v) and (D′,v′)) if, for every
non-empty chain S ⊆ D,

F (tS) = tF (S).

Lemma

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ
is continuous w.r.t. (Σ 99K Σ,v).

Proof.

omitted

Semantics and Verification of Software Summer Semester 2010 7



The Fixpoint Theorem

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) := t{Fn (t∅) | n ∈ N}

is the least fixpoint of F where

F 0(d) := d and Fn+1(d) := F (Fn(d)).

Proof.

on the board

Semantics and Verification of Software Summer Semester 2010 8



Application to fix(Φ)

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃

n∈N

graph(Φn(f∅))

Proof.

Using

Lemma 7.9

(Σ 99K Σ,v) CCPO with least element f∅
LUB = union of graphs

Lemma 8.6 (Φ continuous)

Theorem 8.7 (Fixpoint Theorem)

Semantics and Verification of Software Summer Semester 2010 9



Outline

1 Repetition: The Fixpoint Theorem

2 Equivalence of Operational and Denotational Semantics

3 The Axiomatic Approach

4 The Assertion Language

Semantics and Verification of Software Summer Semester 2010 10



Equivalence of Semantics I

Remember: in Def. 4.1, OJ.K : Cmd → (Σ 99K Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Semantics and Verification of Software Summer Semester 2010 11



Equivalence of Semantics I

Remember: in Def. 4.1, OJ.K : Cmd → (Σ 99K Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Theorem 9.1 (Coincidence Theorem)

For every c ∈ Cmd,

OJcK = CJcK,

i.e., 〈c, σ〉 → σ′ iff CJcK(σ) = σ′, and thus OJ.K = CJ.K.

Semantics and Verification of Software Summer Semester 2010 11



Equivalence of Semantics II

The proof of Theorem 9.1 employs the following auxiliary propositions:

Lemma 9.2
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z.

Semantics and Verification of Software Summer Semester 2010 12



Equivalence of Semantics II

The proof of Theorem 9.1 employs the following auxiliary propositions:

Lemma 9.2
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z.

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Semantics and Verification of Software Summer Semester 2010 12



Equivalence of Semantics II

The proof of Theorem 9.1 employs the following auxiliary propositions:

Lemma 9.2
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z.

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 structural induction on a

2 see Exercise 4.1 (structural induction on b)

Semantics and Verification of Software Summer Semester 2010 12



Equivalence of Semantics III

Proof (Theorem 9.1).

We have to show that

〈c, σ〉 → σ′ ⇐⇒ CJcK(σ) = σ′

⇒ by structural induction over the derivation tree of
〈c, σ〉 → σ′

⇐ by structural induction over c (with a nested complete
induction over fixpoint index n)

(on the board)

Semantics and Verification of Software Summer Semester 2010 13



Overview: Operational/Denotational Semantics

Definition (3.1; Execution relation for statements)

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(if-t)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(wh-f)

〈b, σ〉 → false

〈while b do c, σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

Definition (5.4; Denotational semantics of statements)

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K, CJc2K)
CJwhile b do cK := fix(Φ) where Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Summer Semester 2010 14


	Repetition: The Fixpoint Theorem
	Equivalence of Operational and Denotational Semantics
	The Axiomatic Approach
	The Assertion Language

