Semantics and Verification of Software

Lecture 9: Equivalence of Operational and Denotational
Semantics

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

Summer Semester 2010


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw10/

@ In oral form
@ By appointment (e-mail):

¢ second half of July or

@ beginning of September to mid-October
@ Registration:

¢ Diplom: (V)ZPA

e Master: CampusOffice by May 28

Rm Semantics and Verification of Software Summer Semester 2010



@ Repetition: The Fixpoint Theorem

Rm Semantics and Verification of Software Summer Semester 2010



Characterization of fix(®)

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c],idsx)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain Y --+ X: chain-complete partial order

on function ®: continuity

Rm Semantics and Verification of Software Summer Semester 2010



Chain Completeness

Definition (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains
has a least upper bound.

Q (2V,C) is a CCPO with US = [J,;eg M for every chain S C 2N,

@ (N, <) is not chain complete
(since, e.g., the chain N has no upper bound).

m' Semantics and Verification of Software Summer Semester 2010



Monotonicity

Definition (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let F': D — D'. F'is
called monotonic (w.r.t. (D,C) and (D',C")) if, for every dy,ds € D,

di Cdy = F(dl) E/ F(dg)

Interpretation: monotonic functions “preserve information”

Q Let T:={SCN| S finite}. Then F1 : T - N:S— > _cnis
monotonic w.r.t. (2, C) and (N, <).

Q :2Y -2V 8+ N\ S is not monotonic w.r.t. (2, C)
(since, e.g., # C€ N but F5(0) = N € F5(N) = ().

m Semantics and Verification of Software Summer Semester 2010



Continuity

A function F' is continuous if applying F' and taking LUBs can be
exchanged:

Definition (Continuity)

Let (D,C) and (D’,C') be CCPOs and F : D — D’ monotonic. Then
F is called continuous (w.r.t. (D,C) and (D’,C)) if, for every
non-empty chain S C D,

F (US)=UF(S).

Lemma

Let b € BExp, ¢ € Cmd, and ®(f) := cond(B[b], f o €[c],idx). Then
is continuous w.r.t. (X --» X, ).

omitted O
RWNTH

| A\

Semantics and Verification of Software Summer Semester 2010



The Fixpoint Theorem

Theorem (Fixpoint Theorem by Tarski and Knaster)
Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) := U {F"™ (U0) | n € N}

is the least fizpoint of F' where

F%(d) :=d and F"TY(d) := F(F"(d)).

on the board O l

m Semantics and Verification of Software Summer Semester 2010




Application to fix(®)

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Let b € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],ids). Then

graph(fix(® U graph(®"(fy))
neN

Proof
Using

o Lemma 7.9

o (X --»3,C) CCPO with least element fj
o LUB = union of graphs

@ Lemma 8.6 (® continuous)

@ Theorem 8.7 (Fixpoint Theorem)

m' Semantics and Verification of Software Summer Semester 2010



© Equivalence of Operational and Denotational Semantics

Rm Semantics and Verification of Software Summer Semester 2010 10



Equivalence of Semantics 1

Remember: in Def. 4.1, O[.] : Cmd — (£ --» X) was given by

Olc] (o) =0’ < {c,0) — o’

Theorem 9.1 (Coincidence Theorem)

For every c € Cmd,
O] = €[],

i.e., (c,o) — o iff €[c](o) = o', and thus O[.] = €[.].

m' Semantics and Verification of Software Summer Semester 2010



Equivalence of Semantics 11

The proof of Theorem 9.1 employs the following auxiliary propositions:

Lemma 9.2
Q For everya € AFExp, 0 € X, and z € Z:

(a,0) — z <= Aa](0) = 2.

© For everyb € BEzp, 0 € X, and t € B:

(b,0) =t <= B[b](0) =t.

@ structural induction on a

© see Exercise 4.1 (structural induction on b)

m Semantics and Verification of Software Summer Semester 2010 12



Equivalence of Semantics 111

Proof (Theorem 9.1).
We have to show that

(c,0) = 0 < €[c](0c) =0’

= by structural induction over the derivation tree of
(c,0) — o’

< by structural induction over ¢ (with a nested complete
induction over fixpoint index n)

(on the board) O

Semantics and Verification of Software Summer Semester 2010 13



Overview: Operational/Denotational Semantics

Definition (3.1; Execution relation for statements)

(skip) a,0) = 2

(asgn)

(skip,0) — o (x :=a,0) — oz +— 2]

(c1,0) = o' {ca,0") — 0" (b,0) — true {(c1,0) — o’

(if-t)

(seq)

(c1;c0,0) — o (if b then c; else c2,0) — o’

(b,0) — false {(c2,0) — o’ (b,0) — false

(if-f) (wh-f)

(if b then c; else c2,0) — o’ (while b do ¢,0) — o
(wht) (b,0) — true {c,0) — o’ (while bdo c,0’) — 0"
il

(while b do ¢,0) — 0"

Definition (5.4; Denotational semantics of statements)

¢[skip] := ids
Cz :=ao := o[z — A[a]o]
Cler;e2] = €[ez] o €ed]

C[if b then c; else c2] :
C[while b do ] :

cond(B[b], €ecr], €[ez])
fix(®) where ®(f) := cond(B[b], f o €[c], ids)

m' Semantics and Verification of Software Summer Semester 2010



	Repetition: The Fixpoint Theorem
	Equivalence of Operational and Denotational Semantics

