

Semantics and Verification of Software

Lecture 9: Equivalence of Operational and Denotational Semantics

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw10/>

Summer Semester 2010

- In **oral** form
- By **appointment** (e-mail):
 - second half of July or
 - beginning of September to mid-October
- **Registration:**
 - Diplom: (V)ZPA
 - Master: CampusOffice **by May 28**

- 1 Repetition: The Fixpoint Theorem
- 2 Equivalence of Operational and Denotational Semantics

Goals:

- Prove **existence** of $\text{fix}(\Phi)$ for $\Phi(f) = \text{cond}(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], \text{id}_\Sigma)$
- Show how it can be "**computed**" (more exactly: approximated)

Sufficient conditions:

on domain $\Sigma \dashrightarrow \Sigma$: **chain-complete partial order**

on function Φ : **continuity**

Definition (Chain completeness)

A partial order is called **chain complete (CCPO)** if every of its chains has a least upper bound.

Example

- ① $(2^{\mathbb{N}}, \subseteq)$ is a CCPO with $\sqcup S = \bigcup_{M \in S} M$ for every chain $S \subseteq 2^{\mathbb{N}}$.
- ② (\mathbb{N}, \leq) is not chain complete
(since, e.g., the chain \mathbb{N} has no upper bound).

Definition (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $F : D \rightarrow D'$. F is called **monotonic** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \implies F(d_1) \sqsubseteq' F(d_2).$$

Interpretation: monotonic functions “preserve information”

Example

- ① Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $F_1 : T \rightarrow \mathbb{N} : S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leq) .
- ② $F_2 : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}} : S \mapsto \mathbb{N} \setminus S$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $F_2(\emptyset) = \mathbb{N} \not\subseteq F_2(\mathbb{N}) = \emptyset$).

Continuity

A function F is continuous if applying F and taking LUBs can be exchanged:

Definition (Continuity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be CCPOs and $F : D \rightarrow D'$ monotonic. Then F is called **continuous** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every non-empty chain $S \subseteq D$,

$$F(\sqcup S) = \sqcup F(S).$$

Lemma

Let $b \in BExp$, $c \in Cmd$, and $\Phi(f) := \text{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \text{id}_\Sigma)$. Then Φ is continuous w.r.t. $(\Sigma \dashrightarrow \Sigma, \sqsubseteq)$.

Proof.

omitted

The Fixpoint Theorem

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let (D, \sqsubseteq) be a CPO and $F : D \rightarrow D$ continuous. Then

$$\text{fix}(F) := \sqcup \{F^n(\sqcup \emptyset) \mid n \in \mathbb{N}\}$$

is the least fixpoint of F where

$$F^0(d) := d \text{ and } F^{n+1}(d) := F(F^n(d)).$$

Proof.

on the board

Application to $\text{fix}(\Phi)$

Altogether this completes the definition of $\mathfrak{C}[\![\cdot]\!]$. In particular, for the `while` statement we obtain:

Corollary

Let $b \in BExp$, $c \in Cmd$, and $\Phi(f) := \text{cond}(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], \text{id}_\Sigma)$. Then

$$\text{graph}(\text{fix}(\Phi)) = \bigcup_{n \in \mathbb{N}} \text{graph}(\Phi^n(f_\emptyset))$$

Proof.

Using

- Lemma 7.9
 - $(\Sigma \dashrightarrow \Sigma, \sqsubseteq)$ CCPO with least element f_\emptyset
 - LUB = union of graphs
- Lemma 8.6 (Φ continuous)
- Theorem 8.7 (Fixpoint Theorem)

- 1 Repetition: The Fixpoint Theorem
- 2 Equivalence of Operational and Denotational Semantics

Remember: in Def. 4.1, $\mathfrak{O}[\cdot] : Cmd \rightarrow (\Sigma \dashrightarrow \Sigma)$ was given by

$$\mathfrak{O}[c](\sigma) = \sigma' \iff \langle c, \sigma \rangle \rightarrow \sigma'$$

Theorem 9.1 (Coincidence Theorem)

For every $c \in Cmd$,

$$\mathfrak{O}[c] = \mathfrak{C}[c],$$

i.e., $\langle c, \sigma \rangle \rightarrow \sigma'$ iff $\mathfrak{C}[c](\sigma) = \sigma'$, and thus $\mathfrak{O}[\cdot] = \mathfrak{C}[\cdot]$.

Equivalence of Semantics II

The proof of Theorem 9.1 employs the following auxiliary propositions:

Lemma 9.2

- ① For every $a \in AExp$, $\sigma \in \Sigma$, and $z \in \mathbb{Z}$:

$$\langle a, \sigma \rangle \rightarrow z \iff \mathfrak{A}[\![a]\!](\sigma) = z.$$

- ② For every $b \in BExp$, $\sigma \in \Sigma$, and $t \in \mathbb{B}$:

$$\langle b, \sigma \rangle \rightarrow t \iff \mathfrak{B}[\![b]\!](\sigma) = t.$$

Proof.

- ① structural induction on a
- ② see Exercise 4.1 (structural induction on b)

Proof (Theorem 9.1).

We have to show that

$$\langle c, \sigma \rangle \rightarrow \sigma' \iff \mathfrak{C}[\![c]\!](\sigma) = \sigma'$$

- ⇒ by structural induction over the derivation tree of
 $\langle c, \sigma \rangle \rightarrow \sigma'$
- ⇐ by structural induction over c (with a nested complete induction over fixpoint index n)

(on the board)

Overview: Operational/Denotational Semantics

Definition (3.1; Execution relation for statements)

$$\begin{array}{c} (\text{skip}) \frac{}{\langle \text{skip}, \sigma \rangle \rightarrow \sigma} \qquad (\text{asgn}) \frac{\langle a, \sigma \rangle \rightarrow z}{\langle x := a, \sigma \rangle \rightarrow \sigma[x \mapsto z]} \\ (\text{seq}) \frac{\langle c_1, \sigma \rangle \rightarrow \sigma' \quad \langle c_2, \sigma' \rangle \rightarrow \sigma''}{\langle c_1 ; c_2, \sigma \rangle \rightarrow \sigma''} \quad (\text{if-t}) \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c_1, \sigma \rangle \rightarrow \sigma'}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \sigma'} \\ (\text{if-f}) \frac{\langle b, \sigma \rangle \rightarrow \text{false} \quad \langle c_2, \sigma \rangle \rightarrow \sigma'}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \sigma'} \quad (\text{wh-f}) \frac{\langle b, \sigma \rangle \rightarrow \text{false}}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma} \\ (\text{wh-t}) \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c, \sigma \rangle \rightarrow \sigma' \quad \langle \text{while } b \text{ do } c, \sigma' \rangle \rightarrow \sigma''}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma''} \end{array}$$

Definition (5.4; Denotational semantics of statements)

$$\begin{aligned} \mathfrak{C}[\text{skip}] &:= \text{id}_\Sigma \\ \mathfrak{C}[x := a]\sigma &:= \sigma[x \mapsto \mathfrak{A}[a]\sigma] \\ \mathfrak{C}[c_1 ; c_2] &:= \mathfrak{C}[c_2] \circ \mathfrak{C}[c_1] \\ \mathfrak{C}[\text{if } b \text{ then } c_1 \text{ else } c_2] &:= \text{cond}(\mathfrak{B}[b], \mathfrak{C}[c_1], \mathfrak{C}[c_2]) \\ \mathfrak{C}[\text{while } b \text{ do } c] &:= \text{fix}(\Phi) \text{ where } \Phi(f) := \text{cond}(\mathfrak{B}[b], f \circ \mathfrak{C}[c], \text{id}_\Sigma) \end{aligned}$$