
2 Lehrstuhl für Informatik 2
Modellierung und Verifikation von Software

Semantics and Verification of Software WS2011/12
Solution - Exercise 11

aaAOR Priv.-Doz. Dr. Thomas Noll Christina Jansen, Sabrina von Styp

Exercise 1 (CSP Semantics): (4 Points)

Consider the following CSP program c :

c ∶=

y ∶= 4; if (y > 0) → ((x ∶= y) ∣∣ (x ∶= 3))fi
do (x == 3 ∧ α?x → β!x) ◻ (x == 3 → α!y) od

Provide all ”meanings” of c using the formal semantics of CSP as given in the lecture.

Lösung:

.

Exercise 2 (LTS and Deadlocks): (2+1 Points)

The aim of this exercise is to develop a (simplified) model of a car’s central locking system. Assume the following
components:

• a door which is either open or closed

• a locker for the door which can be activated if the door is not open (otherwise an alarm should be issued),
and

• a key which controls the whole mechanism.

a) Design a corresponding process definition and give its transition system!

b) Check if the car locking system you developed in part a.) has a deadlock. If this is the case, provide a
deadlock free specification of the system.

Lösung:

1

2 Lehrstuhl für Informatik 2
Modellierung und Verifikation von Software

Semantics and Verification of Software WS2011/12
Solution - Exercise 11

Software Modeling and Verification
Lehrstuhl für Informatik 2
RWTH Aachen University

Prof. Dr. Ir. J.-P. Katoen
Priv.-Doz. Dr. T. Noll
T. Han, M. Neuhäußer

Modeling Concurrent and Probabilistic Systems

Winter Term 07/08

– Solution 2 –

Exercise 1 (3 points)

Door(!a) = Open(!a)

Open(!a) = isOpen.Open(!a) + close.Closed(!a)

Closed(!a) = isClosed.Closed(!a) + open.(isLocked.Closed(!a) + isUnlocked.Open(!a))

Locker(!b) = Unlocked(!b)

Unlocked(!b) = isUnlocked.Unlocked(!b) + activate.(isOpen.alarm.Unlocked(!b) + isClosed.Locked(!b))

Locked(!b) = isLocked.Locked(!b) + activate.Unlocked(!b)

Key(!c) = pressed.activate.Key(!c)

System(!e) = new activate, isOpen, isClosed, isUnlocked, isLocked (Door(!a)‖Locker(!b)‖Key(!c))

Here, we do not outline the entire labelled transition system but only a subset that shows the essential idea
of the above process definition. To shorten notation, let !d = (activate, isOpen, isClosed, isUnlocked, isLocked).

new !d(Open(!a)‖Unlocked(!b)‖Key(!c))

new !d(Closed(!a)‖Unlocked(!b)‖Key(!c))

close

new !d((isLocked.Closed(!a) + isUnlocked.Open(!a)‖Unlocked(!b)‖Key(!c))

open

τ

new !d(Closed(!a)‖Unlocked(!b)‖activate.Key(!c))

new !d(Closed(!a)‖isOpen.alarm.Unlocked(!b) + isClosed.Locked(!b))‖Key(!c))

new !d(Closed(!a)‖Locked(!b)‖Key(!c)) new !d((isLocked.Closed(!a) + isUnlocked.Open(!a))‖Locked(!b)‖Key(!c))

new !d(Closed(!a)‖Locked(!b)‖activate.Key(!c))

pressed

τ

τ

open

pressed τ

τ

2

2 Lehrstuhl für Informatik 2
Modellierung und Verifikation von Software

Semantics and Verification of Software WS2011/12
Solution - Exercise 11

3

2 Lehrstuhl für Informatik 2
Modellierung und Verifikation von Software

Semantics and Verification of Software WS2011/12
Solution - Exercise 11

.

Exercise 3 (Parallel Composition of CCS): (2+3 Points)

An engineer is charged with developing an elevator control for a building with five floors, starting with a CCS
model. His subspecification for requesting the elevator and selecting the target floor looks as follows:

Elevator(req, f l1, . . . , f l5) = req.f l1.Elevator(req, f l1, . . . , f l5) + . . . + req.f l5.Elevator(req, f l1, . . . , f l5).

A computer scientist who was called for supporting the engineer suggests the following solution instead:

Elevator(req, f l1, . . . , f l5) = req.(f l1.Elevator(req, f l1, . . . , f l5) + . . . + f l5.Elevator(req, f l1, . . . , f l5)).

a) Are both systems trace equivalent?

b) Test the elevator subsystem together with the specification of a user who would like to reach the fourth
floor:

User(req, f l4) = req.f l4.ni l .

Do both specifications of the elevator guarantee that the user is satisfied?

Lösung:

4

2 Lehrstuhl für Informatik 2
Modellierung und Verifikation von Software

Semantics and Verification of Software WS2011/12
Solution - Exercise 11

Exercise 2 (1 + 3 points)

To shorten notation, let !a = (req ,fl1, . . . ,fl5).

a) Let E(!a) = req.f l1.E(!a) + . . . + req.f l5.E(!a) and E′ = req.(fl1.E
′(!a) + . . . + fl5.E

′(!a)).
⇒ Tr(E) = [req.(fl1 + . . . + fl5)]

∗.(req + ε) = Tr(E′)
⇒ E and E′ are trace equivalent.

b) To test the elevator specification against a user who wants to go to the fourth floor, we compose
the elevator specification and the user in parallel:

U(!a) = req.f l4.nil

S = new req, f l1, . . . , f l5(U‖E)

S′ = new req, f l1, . . . , f l5(U‖E′)

In its LTS, process S has five different outgoing τ -transitions:

S

new!a(fl4.nil||fl1.E(!a)) · · ·fl2 · · · · · ·fl3 · · · new!a(fl4.nil||fl4.E(!a)) · · · fl5 · · ·

τ τ
τ τ τ

new!a(nil||E(!a))

τ

Formally, S
τ−→ new!a[(fl4.nil)‖(fli.E(!a)] for 1 ≤ i ≤ 5. Four of these transitions (those where

i &= 4) exhibit τ deadlocks. The LTS of process S′ has only one outgoing transition, which does not
cause deadlocks. The choice is delayed such that the corresponding communication can take place:

S′

new!a(fl4.nil||(fl1.E
′(!a) + · · · + fl5.E

′(!a))

new!a(nil||E′(!a))

τ

τ

Formally, S′ τ−→ new!a[fl4.nil‖fl1.E
′(!a) + . . . + fl5.E

′(!a)]
τ−→ new!a(nil||E′)

Thus S′ guarantees that the user will reach the fourth floor, whereas S does not.

.

5

