2 Lehrstuhl fiir Informatik 2 Semantics and Verification of Software WS2011/12

Modellierung und Verifikation von Software Solution - Exercise 11
AOR Priv.-Doz. Dr. Thomas Noll Christina Jansen, Sabrina von Styp
Exercise 1 (CSP Semantics): (4 Points)

Consider the following CSP program c:

c:=
y=4if(y>0) > ((x=y)||(x=3))fi
do(x==3Ara?x->BIx)o(x==3->aly)od

Provide all "meanings” of ¢ using the formal semantics of CSP as given in the lecture.

Losung:

Exercise 2 (LTS and Deadlocks): (2+1 Points)

The aim of this exercise is to develop a (simplified) model of a car's central locking system. Assume the following
components:
e a door which is either open or closed

e a locker for the door which can be activated if the door is not open (otherwise an alarm should be issued),
and

e a key which controls the whole mechanism.
a) Design a corresponding process definition and give its transition system!

b) Check if the car locking system you developed in part a.) has a deadlock. If this is the case, provide a
deadlock free specification of the system.

Losung:

2 Lehrstuhl fiir Informatik 2 Semantics and Verification of Software WS2011/12

Modellierung und Verifikation von Software Solution - Exercise 11
Door(d@) = Open(d)
Open(@) = 1sOpen.Open(d) + close.Closed(a)
Closed(@) = 1sClosed.Closed(d) + open.(isLocked.Closed(a) + isUnlocked.Open(a))

Locker(b) = Unlocked(b)
Unlocked(b) = isUnlocked.Unlocked(b) + activate.(isOpen.alarm.Unlocked(b) + isClosed.Locked(b))

-,

Locked(b) = isLocked.Locked(b) + activate.Unlocked(b)
Key(¢) = pressed.activate.Key(C)

System(€) = newactivate, isOpen, isClosed,isUnlocked, isLocked (Door(a@)|| Locker(b)| K ey(Z))

Here, we do not outline the entire labelled transition system but only a subset that shows the essential idea
of the above process definition. To shorten notation, let d = (activate, isOpen, isClosed,isUnlocked, is Locked).

[new d(Open(a)||Unlocked(b) |Key(5’))H new d((is Locked.Closed(a) + isUnlocked.Open(a@)||Unlocked(b) |Key(é'))}

open,
close
A

d(Closed(a@)||Unlocked(b) |Key(5’))}

pressed

A

[ew d(Closed(d@)||Unlocked(b)||activate. Key(E))}

T

d(Closed(d)||isOpen.alarm.Unlocked(b) + isClosed. Locked(b))|| K ey()) }

T

A

open -
[newd Closed(a)|| Locked(b)|Key(€))]—{ new d((isLocked.Closed(a) + isUnlocked.Open(a))||Locked(b)HKey(E')) }
\/

pressed T

new d(Closed(a@)|| Locked(b) |activate.Key(E))}

) Lehrstuhl fiir Informatik 2 Semantics and Verification of Software WS2011/12

Modellierung und Verifikation von Software Solution - Exercise 11
_:lfi:_i,.{-}i:;“ \ * //‘fq}vf C"’mtﬂig }:{.!{ P / L{:if ¢ Lag ‘/b; “ ;})
!l'?i‘)»;'ﬁ '
.

AN LAY A(ML C’o&(&,(() 4 A8 /fé Jf:mq() “ jq)i,,,{ U’g’l}f \tiq# LH ‘-j/)

éf O (m Wya Lf)

¥

AL »{ (i /é 4 (iag\xi/((‘é)) /(f j¢ g? ({:p)!}

JRY| (I T [aehivakk, ﬁﬂ!’/ (c‘)/)

fu o (! “ % i}if"}m“ ke M focder ol }2) + anlboud vi»f’m//b})gﬁlﬁé’“)

| Tetactunt)
At ol (“ ?5’ " // 'z’*?{“[’»fa[c‘ /%7 ((k))

Qaw lodluost alindiody

Al che Syue ()
) tGdial) T lack)
(Uosd (@) 1| Utocid (B) | by (2) I Sy guc (4))
i 0PEN 7(ope) 7 (ol loke d) ,,,(M;{)
(0 2) I Yntebd (8) [ey (2) | Syuct 2))
\]/ PRESS < (pumd) < (yutiuade) 7 istpe) lack)
[0penl@) Untoad (B) [10y (2)) Syuec f)) Aiaerr !

i

':) " V/Oi"" fe O(t"),g,c w[m (O&,;‘Uf J f p;.-mg J 0}{,}:

" rei Vi
Vie Ol |

o

Semantics and Verification of Software WS2011/12

Lehrstuhl fiir Informatik 2
Solution - Exercise 11

Modellierung und Verifikation von Software

Exercise 3 (Parallel Composition of CCS): (2+3 Points)

An engineer is charged with developing an elevator control for a building with five floors, starting with a CCS
model. His subspecification for requesting the elevator and selecting the target floor looks as follows:

Elevator(req,fh, ..., fls) =req.fly.Elevator(req, fl, ..., fls)+...+req.fls.Elevator(req, fh, ..., fls).

Elevator(req, fh, ..., fls) = req.(fh.Elevator(req,fh,..., fls)+...+fl.Elevator(req,fh,..., fls)).

a) Are both systems trace equivalent?

b) Test the elevator subsystem together with the specification of a user who would like to reach the fourth

floor: B
User(req, fly) = 7eq.fly.nil.

Do both specifications of the elevator guarantee that the user is satisfied?

Losung:

o

Lehrstuhl fiir Informatik 2 Semantics and Verification of Software WS2011/12
Modellierung und Verifikation von Software Solution - Exercise 11

To shorten notation, let @ = (req, fly,. .., fl5).

a) Let E(d) =req.fl1.E(@) + ...+ req.fl5s.E(d@) and E' = req.(fl1.E'(d) + ... + fl5.E'(a)).
= Tr(E) = [req.(fli + ...+ fl5)]*.(req +¢) = Tr(E’)
= F and E’ are trace equivalent.

b) To test the elevator specification against a user who wants to go to the fourth floor, we compose
the elevator specification and the user in parallel:

U(a@) = 7eq. fly.nil
S =newreq, fly,..., fls(U||F)
S" = newreq, fl1,..., fls(U||E")

In its LTS, process S has five different outgoing 7-transitions:

S
// \T\
T T
newd(fl,nill|fl,. E@) - fla-- - Ay newd(flynill|fl,.E(@)) Sflg e

\T
newd(nil||E(a))
Formally, S — new @[(fl4.nil)||(f1;.E(@)] for 1 < i < 5. Four of these transitions (those where

i # 4) exhibit 7 deadlocks. The LTS of process S’ has only one outgoing transition, which does not
cause deadlocks. The choice is delayed such that the corresponding communication can take place:

S/

Y

newd(fl,.nil||(fl.E' (@) + - -- + fls.E' (@)

S

T

Y

newda(nil||E'(a))

Formally, S" — new a@[fls.nill|fl;.E'(@) + ... + fl5.E'(@)] — new a@(nil||E")

Thus S’ guarantees that the user will reach the fourth floor, whereas S does not.

