
2 Lehrstuhl für Informatik 2
Modellierung und Verifikation von Software

Semantics and Verification of Software WS2011/12
Solution - Exercise 8

Give a formal proof, using the operational semantics in Definition 12.4.

Lösung:

� : Loc 99K Z is representing the memory
⇢ : Var 99K Loc is mapping variables to memory cells
⇡ is mapping procedure names to code and declaration environment

Choose ⇢ = ⇢;. Initially the value of the memory is undefined.

The proof structure:

4 asgn
�0 3 �1

8 asgn
�1 7 �2

11 asgn
�2 10 �02 call
�2 9 �02 seq

�1 6 �02 block
�1 5 �02 seq

�0 2 �02 block
�0 1 �02

4

2 Lehrstuhl für Informatik 2
Modellierung und Verifikation von Software

Semantics and Verification of Software WS2011/12
Solution - Exercise 8

[1] (⇢0,⇡0) ` hc0,�0i ! �02

block-rule updates the environment only:

[2] (⇢1,⇡1) ` hc1,�0[0 7! 0][1 7! 1]i ! �02

where ⇢1 := ⇢0[x 7! 0][y 7! 1] and ⇡1 := ⇡0[P 7! (y := x, ⇢1,⇡0)]
⇢1
�0: [

x· | y· | . . .
and c1 ⌘ x := 1; begin . . . end:

[3] (⇢1,⇡1) ` hx := 1,�0[0 7! 0][1 7! 0]i ! �1 where �1 = �0[0 7! 1][1 7! 0] since
[4] h1,�0[0 7! 0][1 7! 0] � ⇢1i ! 1

⇢1
�1: [

x

1 |
y· | . . .

[5] (⇢1,⇡1) ` hbegin . . . end,�1i ! �02

block-rule updates the environment only:

[6] (⇢2,⇡2) ` hc2,�1[2 7! 0]i ! �02

where ⇢2 := ⇢1[x 7! 2] and ⇡2 := ⇡1
⇢2
�1: [1 |

y· | x· | . . .
and c2 ⌘ x := 2; call P :

[7] (⇢2,⇡2) ` hx := 2,�1[2 7! 0]i ! �2 where �2 = �1[2 7! 2] since
[8] h2,�1[2 7! 0] � ⇢2i ! 2

⇢2
�2: [1 |

y· |
x

2 | . . .

[9] (⇢2,⇡2) ` hcall P,�2i ! �02

call-rule evaluates �2 to �02, if the procedure does so in its declaration environment (here ⇢1 and ⇡0):

[10] (⇢2,

⇡

0
2z }| {

⇡

0
2[P 7! (y := x, ⇢2,⇡02)]) ` hy := x,�2i ! �02

· where �02 = �2[1/1], ⇡2(P) = (y := x, ⇢2,⇡
0
2) since [11] hx,�2 � ⇢1i ! 1

⇢1

�

0
2:

[
x

1 |
y

1 |
x

loc

2 | . . .

We get that �02 = �0[0 7! 1, 1 7! 1, 2 7! 2].
.

5

