

Exercise 1 (Programming Language WHILE): (1 + 1 Points)

- a) Write a program using the WHILE programming language that calculates $z := x \text{ div } y$ with $x, y, z \in \mathbb{Z}$.
- b) Draw the flow diagram for the program from part a).

Exercise 2 (Evaluation Relations): (1 + 4 Points)

- a) Declare a rule for the arithmetic expression $a_1 \text{ div } a_2$ describing the integer division.
- b) Evaluate the following arithmetic and boolean expressions using the evaluation relations. You may use your rule defined in part a).
 - $a = (10 + x \cdot y) - (z \text{ div } 3)$ with $\sigma(x) = 3, \sigma(y) = 4, \sigma(z) = 5$
 - $b_1 = (\text{true} \vee \text{false}) \wedge \neg \text{false}$
 - $b_2 = ((4 + x) = 7) \wedge (\neg(y > 5))$ with $\sigma(x) = 3, \sigma(y) = 7$

Exercise 3 (Structural Induction): (3 Points)

Consider the structure of lists of natural numbers l with the following inductive definition:

$$\frac{}{[] \in \text{Lists}(\mathbb{N})} \quad \frac{l \in \text{Lists}(\mathbb{N})}{n :: l \in \text{Lists}(\mathbb{N})}$$

Where $[]$ is the empty list, while the infix operator $::$ represents prefixing by a natural number. So, if n is a natural number and l is a list $n :: l$ is an extended list whose first element is n and remainder is the original list l .

We additionally define the following three operations on lists.

- $\text{max}(l)$ - the largest element in l (or 0 if l is empty)
- $\text{sum}(l)$ - the sum of the elements in l
- $\text{len}(l)$ - the length of the list l

Use structural induction to show the following property:

$$\text{sum}(l) \leq \text{max}(l) \cdot \text{len}(l)$$