

Exercise 1 (Monotonicity):

(3 Points)

Which of the following functionals of type $(\Sigma \rightarrow \Sigma) \rightarrow (\Sigma \rightarrow \Sigma)$ are monotonic with respect to the partial order \sqsubseteq given by graph inclusion and why?

1. $\Phi_1(f) = f$
2. $\Phi_2(f) = \begin{cases} g_1 & \text{if } f = g_2 \\ g_2 & \text{otherwise} \end{cases}$ (where $g_1, g_2 : \Sigma \rightarrow \Sigma$ with $g_1 \neq g_2$)
3. $\Phi_3(f)(\sigma) = \begin{cases} f(\sigma) & \text{if } \sigma(x) \neq 0 \\ \sigma & \text{otherwise} \end{cases}$

Exercise 2 (Equivalence of Operational and Denotational Semantics):

(4 Points)

Show that the operational and the denotational semantics of boolean expressions coincide, i.e. prove the following result.

For every $b \in \mathbf{BExp}$, $\sigma \in \Sigma$, and $t \in \mathbb{B}$:

$$\langle b, \sigma \rangle \rightarrow t \quad \text{iff} \quad \mathfrak{B}[\![b]\!](\sigma) = t.$$

You may assume we already know that the operational and denotational semantics of arithmetic expressions coincide, thus fulfilling:

For every $a \in \mathbf{AExp}$, $\sigma \in \Sigma$, and $z \in \mathbb{Z}$:

$$\langle a, \sigma \rangle \rightarrow z \quad \text{iff} \quad \mathfrak{A}[\![a]\!](\sigma) = z.$$

Exercise 3 (Denotational Semantics of While):

(2+1 Points)

Consider the following fragment of the factorial program:

while $\neg(x = 1)$ **do** $(y := y * x; x := x - 1)$.

1. Determine the corresponding functional $\Phi : (\Sigma \rightarrow \Sigma) \rightarrow (\Sigma \rightarrow \Sigma)$.
2. Give at least two fixpoints of Φ .