

Exercise 1 (Continuity):

(1+2 Points)

Show that the following propositions hold:

1. The identity function id_D on a cpo D is continuous.
2. Let $f : D \rightarrow E$ and $g : E \rightarrow F$ be continuous functions on cpos D, E, F . Then their composition $g \circ f : D \rightarrow F$ is continuous.

Exercise 2 (Fixpoint Approximation):

(4 Points)

Investigate

$\mathfrak{C}[z := 0; \mathbf{while } x > 0 \mathbf{do } (x := x - 1; z := z + y)]$

in analogy to the factorial example 7.9 given in lecture 7.

Exercise 3 (Three-Valued Denotation Semantics):

(1+1+2 Points)

Define a three-valued denotational semantics for the *WHILE* language as follows:

1. Assume that at the beginning of a programm evaluation, all variables have unknown values. To model this, extend the variable domain by \perp , and let σ_\perp with $\sigma(x) = \perp$ for all $x \in \mathbf{Var}$ be the initial state of all programs. Define $\mathfrak{A}[\cdot]$ in analogy to Definition 5.1 and evaluate $3 + x$ and $0 * x$ for σ_\perp .
2. In addition to true and false, a third truth-value $?$ is needed to express uncertainty about the result of a boolean expression, i.e. $x > 0$ may hold or not, depending on how x is initialized, and thus it should evaluate to $?$. Define $\mathfrak{B}[\cdot]$ in analogy to Definition 5.2 and evaluate $\neg(x = y) \wedge \mathit{false}$ for σ_\perp .
3. Define **cond** such that common evaluation results are preserved in case of an indefinite evaluation of the boolean expression. Evaluate $\mathbf{cond}(?, \mathfrak{C}[x := 2; y := 3; z := x + y], \mathfrak{C}[x := 3; y := 2; z := x + y])$ for σ_\perp .