

Exercise 1 (Assertions):

(1+1 Points)

- a) Give an assertion $(k = \gcd(i, j)) =: A \in \text{Assn}$ with logical variables $i, j, k \in \text{LVar}$, expressing that k is the greatest common divisor of i and j , i.e. $k = \gcd(i, j)$.
- b) The Smarandache-function $\mu(i)$ is defined as the smallest positive integer number satisfying $i \mid (\mu(i)!)$. Give an assertion $A \in \text{Assn}$ with logical variables $i, k \in \text{LVar}$, expressing that $k = \mu(i)$.

Exercise 2 (Greatest Common Divisor):

(3+4 Points)

- a) Show that the *greatest common divisor* of two positive integers $i, j \in \mathbb{Z}$, denoted by $\gcd(i, j)$, has the following properties:
 - a) $i > j \Rightarrow \gcd(i, j) = \gcd(i - j, j)$,
 - b) $\gcd(i, j) = \gcd(j, i)$, and
 - c) $\gcd(i, i) = i$.
- b) Using the Hoare rules, prove that the statement $c \in \text{Cmd}$ given by

while $\neg(x = y)$ **do if** $x \leq y$ **then** $y := y - x$ **else** $x := x - y$,

satisfies the following partial correctness property:

$$\{x = i \wedge y = j \wedge i \geq 1 \wedge j \geq 1\} c \{x = \gcd(x, y) = \gcd(i, j)\}.$$

Exercise 3 (For-Loop):

(1+3 Points)

- a) Develop a proof rule for statements of the form **for** $x := a_1$ **to** a_2 **do** c where $x \in \text{Var}$, $a_1, a_2 \in \text{AExp}$, and $c \in \text{Cmd}$ (without assuming the presence of a **while** statement in the programming language).
- b) Using this rule (and the known proof system), establish the validity of the following partial correctness property:

$$\{y \geq 0\} z := 0; \text{for } x := 1 \text{ to } y \text{ do } z := z + x \left\{ z = \frac{y(y+1)}{2} \right\}$$