

Exercise 1 (Total Correctness):

(3 Points)

Prove the total correctness of the following program:

$\{A\} z := 0; c \{\Downarrow B\}$

where

$A := (x > 0 \wedge x = i \wedge y > 0)$
 $c := \text{while } y \leq x \text{ do } (z := z + 1; x := x - y)$
 $B := (z = i \text{ div } y)$

Exercise 2 (Questions about Axiomatic Semantics):

(4 Points)

To conclude the section about axiomatic semantics, answer the following questions.

- What is the idea of axiomatic semantics? Which conclusions about program behaviour can be drawn by using them?
- Describe the concept of assertions and partial correctness properties.
- What do you know about soundness and completeness of axiomatic semantics?
- Briefly sketch the steps needed to prove total correctness of a program fragment. Which statements about termination of a program fragment can be proven by means of partial correctness properties?

Exercise 3 (Axiomatic Equivalence):

(3 Points)

Consider the axiomatic equivalence of two statements defined in Definition 12.1 in the lecture. Based on this definition show that the following proposition holds:

Proposition 1 $\forall A, B \in \text{Assn} : c_1 \approx c_2 \Leftrightarrow (\models \{A\} c_1 \{\Downarrow B\} \Leftrightarrow \models \{A\} c_2 \{\Downarrow B\})$.

Exercise 4 (Operational Semantics Procedure Blocks):

(2 Points)

Consider the following example:

```

 $c_0 \equiv \begin{array}{l} \text{begin} \\ \quad \text{var } x; \text{var } y; \\ \quad \text{proc } P \text{ is } y := x; \\ \quad x := 1; \\ \quad \begin{array}{l} \text{begin} \\ \quad \text{var } x; \\ \quad x := 2; \\ \quad \text{call } P \\ \quad \text{end} \\ \text{end} \end{array} \end{array}$ 

```

Choose initial variable environment ρ_0 such that with static scope semantics, for all π_0 and σ_0 :

$$\rho_0, \pi_0 \vdash \langle c_0, \sigma_0 \rangle \rightarrow \sigma_0[0 \mapsto 1, 1 \mapsto 1, 2 \mapsto 2]$$

Give a formal proof, using the operational semantics in Definition 12.4.