
Semantics and Verification of Software
Lecture 1: Introduction

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

Semantics and Verification of Software Winter Semester 2011/12 1.2

Staff

Lectures: Thomas Noll

Lehrstuhl für Informatik 2, Room 4211
E-mail noll@cs.rwth-aachen.de
Phone (0241)80-21213

Exercise classes:

Christina Jansen (christina.jansen@cs.rwth-aachen.de)
Sabrina von Styp (sabrina.von-styp@cs.rwth-aachen.de)

Semantics and Verification of Software Winter Semester 2011/12 1.3

noll@cs.rwth-aachen.de
christina.jansen@cs.rwth-aachen.de
sabrina.von-styp@cs.rwth-aachen.de

Target Audience

Master/Diplom programme Informatik

Theoretische Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung (Diplom)

Master programme Software Systems Engineering

Theoretical CS
Specialization in Formal Methods, Programming Languages and
Software Validation

In general:

interest in formal models for programming languages
application of mathematical reasoning methods

Expected: basic knowledge in

essential concepts of imperative programming languages
formal languages and automata theory
mathematical logic

Semantics and Verification of Software Winter Semester 2011/12 1.4

Target Audience

Master/Diplom programme Informatik

Theoretische Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung (Diplom)

Master programme Software Systems Engineering

Theoretical CS
Specialization in Formal Methods, Programming Languages and
Software Validation

In general:

interest in formal models for programming languages
application of mathematical reasoning methods

Expected: basic knowledge in

essential concepts of imperative programming languages
formal languages and automata theory
mathematical logic

Semantics and Verification of Software Winter Semester 2011/12 1.4

Organization

Schedule:

Lecture Wed 10:00–11:30 AH 2 (starting Oct 12)
Lecture Thu 13:30–15:00 AH 1 (starting Oct 13)
Exercise class Tue 08:15-09:45 AH 4 or 11:45–13:15 AH 6
(starting Oct 25)

Irregular lecture dates – checkout web page!

1st assignment sheet: next Tuesday (Oct 18)

Work on assignments in groups of three

Examination (6 ECTS credits):

oral
date by agreement

Admission requires at least 50% of the points in the exercises

Solutions to exercises and exam in English or German

Semantics and Verification of Software Winter Semester 2011/12 1.5

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

Semantics and Verification of Software Winter Semester 2011/12 1.6

Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
⇒ Compiler Construction

Semantics: “What does this program mean?”
(output/behavior in dependence of input/environment)
⇒ This course

Pragmatics: length and understandability of programs
learnability of programming language
appropriateness for specific applications, ...

⇒ Software Engineering

Historic development:

Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler/interpreter

Formal semantics since 1970s
(operational/denotational/axiomatic)

Semantics and Verification of Software Winter Semester 2011/12 1.7

Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
⇒ Compiler Construction

Semantics: “What does this program mean?”
(output/behavior in dependence of input/environment)
⇒ This course

Pragmatics: length and understandability of programs
learnability of programming language
appropriateness for specific applications, ...

⇒ Software Engineering

Historic development:

Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler/interpreter

Formal semantics since 1970s
(operational/denotational/axiomatic)

Semantics and Verification of Software Winter Semester 2011/12 1.7

The Semantics of “Semantics”

Originally: study of meaning of symbols (linguistics)

Semantics of a program: meaning of a concrete program (I/O mapping,
behavior, ...)

Semantics of a programming language: mapping of each (syntactically
correct) program of a concrete programming language to its
meaning

Semantics of software: various techniques for defining the semantics of
diverse programming languages

Semantics and Verification of Software Winter Semester 2011/12 1.8

Motivation for Rigorous Formal Treatment I

Example 1.1

1 How often will the following loop be traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

2 What if p = nil in the following program?

while p <> nil and p^.key < val do ...

Pascal: strict boolean operations
Modula: non-strict boolean operations X

Semantics and Verification of Software Winter Semester 2011/12 1.9

Motivation for Rigorous Formal Treatment I

Example 1.1

1 How often will the following loop be traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

2 What if p = nil in the following program?

while p <> nil and p^.key < val do ...

Pascal: strict boolean operations
Modula: non-strict boolean operations X

Semantics and Verification of Software Winter Semester 2011/12 1.9

Motivation for Rigorous Formal Treatment II

Support for development of

new programming languages: missing details, ambiguities and
inconsistencies can be recognized
compilers: automatic compiler generation from appropriately defined
semantics
programs: exact understanding of semantics avoids uncertainties in the
implementation of algorithms

Support for correctness proofs of

programs: comparison of program semantics with desired behaviour
(e.g., termination properties, absence of deadlocks, ...)

compilers: programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

optimizing transformations: code
optimization−→ code

semantics ↓ ↓ semantics

meaning
?
= meaning

Semantics and Verification of Software Winter Semester 2011/12 1.10

Motivation for Rigorous Formal Treatment II

Support for development of

new programming languages: missing details, ambiguities and
inconsistencies can be recognized
compilers: automatic compiler generation from appropriately defined
semantics
programs: exact understanding of semantics avoids uncertainties in the
implementation of algorithms

Support for correctness proofs of

programs: comparison of program semantics with desired behaviour
(e.g., termination properties, absence of deadlocks, ...)

compilers: programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

optimizing transformations: code
optimization−→ code

semantics ↓ ↓ semantics

meaning
?
= meaning

Semantics and Verification of Software Winter Semester 2011/12 1.10

(Complementary) Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

example: (seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′

application: implementation of programming languages
(compilers, interpreters, ...)

Denotational semantics: mathematical definition of input/output relation
of the program by induction on its syntactic structure
(D. Scott, C. Strachey)

example: CJ.K : Cmd → (Σ 99K Σ)
CJc1;c2K := CJc2K ◦ CJc1K

application: program analysis

Axiomatic semantics: formalization of special properties of programs by
logical formulae (assertions/proof rules; R. Floyd, T. Hoare)

example: (seq)
{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

application: program verification

Semantics and Verification of Software Winter Semester 2011/12 1.11

(Complementary) Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

example: (seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′

application: implementation of programming languages
(compilers, interpreters, ...)

Denotational semantics: mathematical definition of input/output relation
of the program by induction on its syntactic structure
(D. Scott, C. Strachey)

example: CJ.K : Cmd → (Σ 99K Σ)
CJc1;c2K := CJc2K ◦ CJc1K

application: program analysis

Axiomatic semantics: formalization of special properties of programs by
logical formulae (assertions/proof rules; R. Floyd, T. Hoare)

example: (seq)
{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

application: program verification

Semantics and Verification of Software Winter Semester 2011/12 1.11

(Complementary) Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

example: (seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′

application: implementation of programming languages
(compilers, interpreters, ...)

Denotational semantics: mathematical definition of input/output relation
of the program by induction on its syntactic structure
(D. Scott, C. Strachey)

example: CJ.K : Cmd → (Σ 99K Σ)
CJc1;c2K := CJc2K ◦ CJc1K

application: program analysis

Axiomatic semantics: formalization of special properties of programs by
logical formulae (assertions/proof rules; R. Floyd, T. Hoare)

example: (seq)
{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

application: program verification

Semantics and Verification of Software Winter Semester 2011/12 1.11

Overview of the Course

1 The imperative model language WHILE

2 Operational semantics of WHILE

3 Denotational semantics of WHILE

4 Equivalence of operational and denotational semantics

5 Axiomatic semantics of WHILE

6 Extensions: procedures and dynamic data structures

7 Applications: compiler correctness etc.

Semantics and Verification of Software Winter Semester 2011/12 1.12

Literature

(also see the collection [“Handapparat”] at the CS Library)

Formal semantics:

G. Winskel: The Formal Semantics of Programming Languages, The
MIT Press, 1996

Compiler correctness

H.R. Nielson, F. Nielson: Semantics with Applications: A Formal
Introduction, Wiley, 1992

Semantics and Verification of Software Winter Semester 2011/12 1.13

Outline

1 Preliminaries

2 Introduction

3 The Imperative Model Language WHILE

Semantics and Verification of Software Winter Semester 2011/12 1.14

Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z
Truth values B = {true, false} t
Variables Var = {x, y, . . .} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) c

Semantics and Verification of Software Winter Semester 2011/12 1.15

Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z
Truth values B = {true, false} t
Variables Var = {x, y, . . .} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) c

Semantics and Verification of Software Winter Semester 2011/12 1.15

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Remarks: we assume that

the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)

the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

Semantics and Verification of Software Winter Semester 2011/12 1.16

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Remarks: we assume that

the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)

the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

Semantics and Verification of Software Winter Semester 2011/12 1.16

A WHILE Program

and its Flow Diagram

Example 1.3

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

Effect: z := x * y = 42

Semantics and Verification of Software Winter Semester 2011/12 1.17

A WHILE Program and its Flow Diagram

Example 1.3

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

Effect: z := x * y = 42

Semantics and Verification of Software Winter Semester 2011/12 1.17

A WHILE Program and its Flow Diagram

Example 1.3

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

Effect: z := x * y = 42

Semantics and Verification of Software Winter Semester 2011/12 1.17

	Preliminaries
	Introduction
	The Imperative Model Language WHILE

