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Staff

Lectures: Thomas Noll

Lehrstuhl für Informatik 2, Room 4211
E-mail noll@cs.rwth-aachen.de
Phone (0241)80-21213

Exercise classes:

Christina Jansen (christina.jansen@cs.rwth-aachen.de)
Sabrina von Styp (sabrina.von-styp@cs.rwth-aachen.de)
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Target Audience

Master/Diplom programme Informatik

Theoretische Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung (Diplom)

Master programme Software Systems Engineering

Theoretical CS
Specialization in Formal Methods, Programming Languages and
Software Validation

In general:

interest in formal models for programming languages
application of mathematical reasoning methods

Expected: basic knowledge in

essential concepts of imperative programming languages
formal languages and automata theory
mathematical logic
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Organization

Schedule:

Lecture Wed 10:00–11:30 AH 2 (starting Oct 12)
Lecture Thu 13:30–15:00 AH 1 (starting Oct 13)
Exercise class Tue 08:15-09:45 AH 4 or 11:45–13:15 AH 6
(starting Oct 25)

Irregular lecture dates – checkout web page!

1st assignment sheet: next Tuesday (Oct 18)

Work on assignments in groups of three

Examination (6 ECTS credits):

oral
date by agreement

Admission requires at least 50% of the points in the exercises

Solutions to exercises and exam in English or German
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Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
⇒ Compiler Construction

Semantics: “What does this program mean?”
(output/behavior in dependence of input/environment)
⇒ This course

Pragmatics: length and understandability of programs
learnability of programming language
appropriateness for specific applications, ...

⇒ Software Engineering

Historic development:

Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler/interpreter

Formal semantics since 1970s
(operational/denotational/axiomatic)

Semantics and Verification of Software Winter Semester 2011/12 1.7



Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
⇒ Compiler Construction

Semantics: “What does this program mean?”
(output/behavior in dependence of input/environment)
⇒ This course

Pragmatics: length and understandability of programs
learnability of programming language
appropriateness for specific applications, ...

⇒ Software Engineering

Historic development:

Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler/interpreter

Formal semantics since 1970s
(operational/denotational/axiomatic)

Semantics and Verification of Software Winter Semester 2011/12 1.7



The Semantics of “Semantics”

Originally: study of meaning of symbols (linguistics)

Semantics of a program: meaning of a concrete program (I/O mapping,
behavior, ...)

Semantics of a programming language: mapping of each (syntactically
correct) program of a concrete programming language to its
meaning

Semantics of software: various techniques for defining the semantics of
diverse programming languages
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Motivation for Rigorous Formal Treatment I

Example 1.1

1 How often will the following loop be traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

2 What if p = nil in the following program?

while p <> nil and p^.key < val do ...

Pascal: strict boolean operations  
Modula: non-strict boolean operations X
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Motivation for Rigorous Formal Treatment II

Support for development of

new programming languages: missing details, ambiguities and
inconsistencies can be recognized
compilers: automatic compiler generation from appropriately defined
semantics
programs: exact understanding of semantics avoids uncertainties in the
implementation of algorithms

Support for correctness proofs of

programs: comparison of program semantics with desired behaviour
(e.g., termination properties, absence of deadlocks, ...)

compilers: programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

optimizing transformations: code
optimization−→ code

semantics ↓ ↓ semantics

meaning
?
= meaning
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(Complementary) Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)

example: (seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′

application: implementation of programming languages
(compilers, interpreters, ...)

Denotational semantics: mathematical definition of input/output relation
of the program by induction on its syntactic structure
(D. Scott, C. Strachey)

example: CJ.K : Cmd → (Σ 99K Σ)
CJc1;c2K := CJc2K ◦ CJc1K

application: program analysis

Axiomatic semantics: formalization of special properties of programs by
logical formulae (assertions/proof rules; R. Floyd, T. Hoare)

example: (seq)
{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

application: program verification
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Overview of the Course

1 The imperative model language WHILE

2 Operational semantics of WHILE

3 Denotational semantics of WHILE

4 Equivalence of operational and denotational semantics

5 Axiomatic semantics of WHILE

6 Extensions: procedures and dynamic data structures

7 Applications: compiler correctness etc.
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Literature

(also see the collection [“Handapparat”] at the CS Library)

Formal semantics:

G. Winskel: The Formal Semantics of Programming Languages, The
MIT Press, 1996

Compiler correctness

H.R. Nielson, F. Nielson: Semantics with Applications: A Formal
Introduction, Wiley, 1992
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Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z
Truth values B = {true, false} t
Variables Var = {x, y, . . .} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) c
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Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Remarks: we assume that

the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)

the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)
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A WHILE Program

and its Flow Diagram

Example 1.3

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1

Effect: z := x * y = 42
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