Semantics and Verification of Software

Lecture 1: Introduction

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svswll/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

@ Preliminaries

“er ics and Verification of Software Winter Semester 2011/12

@ Lectures: Thomas Noll
o Lehrstuhl fiir Informatik 2, Room 4211
o E-mail noll@cs.rwth-aachen.de
e Phone (0241)80-21213

@ Exercise classes:

o Christina Jansen (christina.jansen@cs.rwth-aachen.de)
e Sabrina von Styp (sabrina.von-styp@cs.rwth-aachen.de)

“er Semantics and Verification of Software Winter Semester 2011/12

noll@cs.rwth-aachen.de
christina.jansen@cs.rwth-aachen.de
sabrina.von-styp@cs.rwth-aachen.de

Target Audience

@ Master/Diplom programme Informatik
o Theoretische Informatik
o Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung (Diplom)
@ Master programme Software Systems Engineering
e Theoretical CS
e Specialization in Formal Methods, Programming Languages and
Software Validation

“er Semantics and Verification of Software Winter Semester 2011/12

Target Audience

@ Master/Diplom programme Informatik
o Theoretische Informatik
o Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung (Diplom)
@ Master programme Software Systems Engineering
e Theoretical CS
e Specialization in Formal Methods, Programming Languages and
Software Validation
@ In general:
e interest in formal models for programming languages
e application of mathematical reasoning methods
@ Expected: basic knowledge in
e essential concepts of imperative programming languages
e formal languages and automata theory
e mathematical logic

“er Semantics and Verification of Software Winter Semester 2011/12

@ Schedule:

o Lecture Wed 10:00-11:30 AH 2 (starting Oct 12)

o Lecture Thu 13:30-15:00 AH 1 (starting Oct 13)

o Exercise class Tue 08:15-09:45 AH 4 or 11:45-13:15 AH 6
(starting Oct 25)

Irregular lecture dates — checkout web page!
1st assignment sheet: next Tuesday (Oct 18)
Work on assignments in groups of three
Examination (6 ECTS credits):

e oral
o date by agreement

@ Admission requires at least 50% of the points in the exercises

@ Solutions to exercises and exam in English or German

“er Semantics and Verification of Software Winter Semester 2011/12

© Introduction

“er ics and Verification of Software Winter Semester 2011/12

Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
= Compiler Construction
Semantics: “What does this program mean?”
(output/behavior in dependence of input/environment)
= This course
Pragmatics: @ length and understandability of programs
@ learnability of programming language
@ appropriateness for specific applications, ...
= Software Engineering

“er Semantics and Verification of Software Winter Semester 2011/12

Aspects of Programming Languages

Syntax: “How does a program look like?”
(hierarchical composition of programs from structural
components)
= Compiler Construction
Semantics: “What does this program mean?”
(output/behavior in dependence of input/environment)
= This course
Pragmatics: @ length and understandability of programs
@ learnability of programming language
@ appropriateness for specific applications, ...
= Software Engineering

Historic development:
e Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler/interpreter
@ Formal semantics since 1970s
(operational /denotational /axiomatic)

“er Semantics and Verification of Software Winter Semester 2011/12

The Semantics of “Semantics”

Originally: study of meaning of symbols (linguistics)
Semantics of a program: meaning of a concrete program (/O mapping,
behavior, ...)
Semantics of a programming language: mapping of each (syntactically
correct) program of a concrete programming language to its
meaning

Semantics of software: various techniques for defining the semantics of
diverse programming languages

“er Semantics and Verification of Software Winter Semester 2011/12

Motivation for Rigorous Formal Treatment |

Example 1.1

@ How often will the following loop be traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

RWTH Semantics and Verification of Software Winter Semester 2011/12 1.9

Motivation for Rigorous Formal Treatment |

Example 1.1

@ How often will the following loop be traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

@ What if p = nil in the following program?

while p <> nil and p~.key < val do ...

Pascal: strict boolean operations 4
Modula: non-strict boolean operations v

RWTH Semantics and Verification of Software Winter Semester 2011/12 1.9

Motivation for Rigorous Formal Treatment Il

@ Support for development of
e new programming languages: missing details, ambiguities and
inconsistencies can be recognized
e compilers: automatic compiler generation from appropriately defined
semantics
e programs: exact understanding of semantics avoids uncertainties in the
implementation of algorithms

“er Semantics and Verification of Software Winter Semester 2011/12

Motivation for Rigorous Formal Treatment Il

@ Support for development of
e new programming languages: missing details, ambiguities and
inconsistencies can be recognized
e compilers: automatic compiler generation from appropriately defined
semantics
e programs: exact understanding of semantics avoids uncertainties in the
implementation of algorithms

@ Support for correctness proofs of

e programs: comparison of program semantics with desired behaviour
(e.g., termination properties, absence of deadlocks, ...)

. . compiler .
e compilers: programming language — machine code
semantics | 1 (simple) semantics
. ? .
meaning = meaning
.. . optimization
e optimizing transformations: code — code
semantics | J semantics
. ? .
meaning = meaning

“er Semantics and Verification of Software Winter Semester 2011/12

(Complementary) Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)
(c1,0) = o (e,0")y = 0"

@ example: (seq) ”
(c1;¢0,0) > 0
@ application: implementation of programming languages

(compilers, interpreters, ...)

“er Semantics and Verification of Software Winter Semester 2011/12

(Complementary) Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)
(c1,0) = o (e,0")y = 0"

@ example: (seq)
(c1;¢0,0) — o’
@ application: implementation of programming languages
(compilers, interpreters, ...)
Denotational semantics: mathematical definition of input/output relation
of the program by induction on its syntactic structure
(D. Scott, C. Strachey)
e example: €[]: Cmd — (X --» X)
Q:[[Cl H Czﬂ = Q:[[CQ]] o Q:[[Cl]]
@ application: program analysis

“er Semantics and Verification of Software Winter Semester 2011/12

(Complementary) Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)
(c1,0) = o (e,0")y = 0"

@ example: (seq)
(c1;¢0,0) — o’
@ application: implementation of programming languages
(compilers, interpreters, ...)
Denotational semantics: mathematical definition of input/output relation
of the program by induction on its syntactic structure
(D. Scott, C. Strachey)
e example: €[]: Cmd — (X --» X)
Q:[[Cl H Czﬂ = Q:[[CQ]] o Q:[[Cl]]
@ application: program analysis
Axiomatic semantics: formalization of special properties of programs by
logical formulae (assertions/proof rules; R. Floyd, T. Hoare)
{A}a{C} {C}{B}

{Atc;2{B}
@ application: program verification

@ example: (seq)

“er Semantics and Verification of Software Winter Semester 2011/12

Overview of the Course

© The imperative model language WHILE

@ Operational semantics of WHILE

© Denotational semantics of WHILE

@ Equivalence of operational and denotational semantics
© Axiomatic semantics of WHILE

@ Extensions: procedures and dynamic data structures

@ Applications: compiler correctness etc.

“er Semantics and Verification of Software Winter Semester 2011/12 1.12

(also see the collection [“Handapparat”] at the CS Library)

@ Formal semantics:

o G. Winskel: The Formal Semantics of Programming Languages, The
MIT Press, 1996

@ Compiler correctness

o H.R. Nielson, F. Nielson: Semantics with Applications: A Formal
Introduction, Wiley, 1992

“er Semantics and Verification of Software Winter Semester 2011/12 1.13

© The Imperative Model Language WHILE

“er Semantics and Verification of Software Winter Semester 2011/12

Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

“er Semantics and Verification of Software Winter Semester 2011/12

Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers z={0,1,-1,...} =z
Truth values B = {true, false} t
Variables Var = {x,y,...} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) ¢

“er Semantics and Verification of Software Winter Semester 2011/12 1.15

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a:; =z | X | aitas | ai—ar | air*xap € AEXp
[o= t|al=32 | 31>32|—|b|b1/\b2 ‘ b1 V by € BExp
c:=skip|x :=a|c;c | if b then ¢; else ¢ | while b do c € Cmd

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 1.16

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a:; =z | X | aitas | ai—ar | air*xap € AEXp
[o= t|31=32 | 31>32’—|b|b1/\b2 ‘ b1 V by € BExp
c:=skip|x :=a|c;c | if b then ¢; else ¢ | while b do c € Cmd

v

Remarks: we assume that

@ the syntax of numbers, truth values and variables is predefined
(i.e., no "“lexical analysis")

@ the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

RWTH Semantics and Verification of Software Winter Semester 2011/12 1.16

A WHILE Program

X := 6;
y = 7T;
z = 0;

while x > 0 do
X :=x - 1;
v o=y,
while v > 0 d
v :=v - 1;
z =z + 1

RWTH Semantics and Verification of Software Winter Semester 2011/12 1.17

A WHILE Program and its Flow Diagram

X := 6;
y = 7T;
z := 0;

while x > 0 do
X :=x - 1;

v o=y,

while v > 0 d
v :=v - 1;
z =z + 1

“er Semantics and Verification of Software Winter Semester 2011/12 1.17

A WHILE Program and its Flow Diagram

X := 6;
y = 7T;
z := 0;
while x > 0 do
X :=x - 1;
v o=y,
while v > 0 d
v :=v - 1;
z =z + 1

Effect: z := x * y = 42

“er Semantics and Verification of Software Winter Semester 2011/12 1.17

	Preliminaries
	Introduction
	The Imperative Model Language WHILE

