Semantics and Verification of Software

Lecture 10: Axiomatic Semantics of WHILE II
(Hoare Logic)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svswill/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

@ Repetition: The Axiomatic Approach

“er Semantics and Verification of Software Winter Semester 2011/12

Partial Correctness Properties

Validity of property

For all states o € ¥ which satisfy A:
if the execution of ¢ in o terminates in ¢/ € ¥, then o’ satisfies B.

“er Semantics and Verification of Software Winter Semester 2011/12

Syntax of Assertion Language

Definition (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

an=2z|x|i|ai+ax|ai-ax | aixax € LExp
A=t | ai=ap ‘ ai>as | —A | A1 A As | A1V As |Vi.A € Assn

Abbreviations:
Al — A=A VA
3i.A = —(VinA)
a; > ap = ar>ax V ai;=ar

RWTH Semantics and Verification of Software Winter Semester 2011/12 10.4

The semantics now additionally depends on values of logical variables:

Definition (Semantics of)

An interpretation is an element of the set
Int :={l|I: LVar — Z}.
The value of an arithmetic expressions with logical variables is given by the
functional
L[] : LExp — (Int — (X — Z))

where

2[[2]]/0 = 2[[31"'32]]/0 = S[[al]]/a aF 2[[32]]/0

Llx]lo = o(x) Llai-ax]lo = L[ai]lo — £[az]lo

Llille : Llai*az]lo := L[ai]lo = L[az]lo

|
N

Il

—
—~

-~
~—

RWTH Semantics and Verification of Software Winter Semester 2011/12 10.5

Semantics of Assertions

Reminder: A ::=t|aj=ay | a1>ax | "A| AL AN Ay | ALV Ay | Vi.A € Assn

Definition (Semantics of assertions)

Let A€ Assn, 0 € ¥ |, and | € Int. The relation “o satisfies A in ["
(notation: o =/ A) is inductively defined by:

o =/ true

o):I di=az if 2[[31]]/0‘ = S[[az]]la

o =l ap>ap if £[a1]lo > Llao]lo

o= -A ifnot o =/ A

o }:I AiLNAy ifo }:I A1 and o):I A>

o= AIVA, ifolE Aloro = A

o E'Vi.A if o =12 A for every z € Z

LEA
Furthermore o satisfies A (o |= A) if o |=! A for every interpretation
| € Int, and A is called valid (= A) if o |= A for every state o € ¥.

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 10.6

Partial Correctness Properties

Definition (Partial correctness properties)
Let A,B € Assn and c € Cmd.

@ An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

@ Given o € ¥ | and | € Int, we let

o ! {A}c{B)

if o = A implies ¢[c]o ' B
(or equivalently: o € A/ = ¢[c]o € B).
o {A} c{B} is called valid in | (notation: =/ {A} c{B}) if
o = {A} c {B} for every 0 € ¥ (or equivalently: €[c]A’ C B').
o {A} c{B} is called valid (notation: |= {A} c{B}) if ! {A} c{B}
for every | € Int.

“w.rH Semantics and Verification of Software Winter Semester 2011/12 10.7

© Proof Rules for Partial Correctness

“er Semantics and Verification of Software Winter Semester 2011/12

Hoare Logic |

Goal: syntactic derivation of valid partial correctness properties

Definition 10.1 (Hoare Logic)

The Hoare rules are given by

(skip)

(A} skip {A} () AL > 3} xi=a (A}
{A}q{C} 1Ce{B} 1AAb}a{B} {AA-b}ciB}
) A e (B) ") "CAT1f b then o elzs & (B}
i {AA b} c{A}

{A}while b do c{A A —b}
F(A = A) {A1c{B'} (B = B)

{A} c{B}
A partial correctness property is provable (notation: - {A} c{B}) if it is
derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

(cons)

v

Here A[x — a] denotes the syntactic replacement of every occurrence of x
by ain A.

“w.rH Semantics and Verification of Software Winter Semester 2011/12 10.9

Hoare Logic Il

Example 10.2

Proof of {A}y:=1;c{B} where
¢ := (while —(x=1) do (y:=y*x; x:=x-1))
A= (x=1)
B:=(y=1)

(on the board)

RWTH Semantics and Verification of Software Winter Semester 2011/12 10.10

Hoare Logic Il

Example 10.2

Proof of {A}y:=1;c{B} where
¢ := (while —(x=1) do (y:=y*x; x:=x-1))
A= (x=1)
B:=(y=1)

(on the board)

Structure of the proof:
(asgn) -, (asgn) -
(cons) 1L (seq) “n "5
(cons) 4 (2sen)5 5 (cons) 7~ (while) - 9
(seq) 2 - g

RWTH Semantics and Verification of Software Winter Semester 2011/12 10.10

Hoare Logic I

Example 10.2 (continued)

Here the respective propositions are given by:
QC=x>0 = yxx!=il)
Q {Aly := 1;c{B}
Q {Aty := 1{C}
Q {C}c{B}
QA= (Cy—1])
O {Cly— 1]}y := 1{C}
@ E(C = 0
Q=(C= ()
Q {Clc{-(=x=1D)AC}
QF(-(-&x=1)AC = B)
@ {~(x=1)AC}y := yxx; x := x-1{C}
@ F(-&=1DAC = Clx—x-1,y— y*x])
@ {Clx—x-1,y— y*x|}y := y*x; x := x-1{C}
® =(C= ()
@ {Clx—x-1,y— yxx|}y := y*x{C[x — x-1]}
@ {Clx— x-1]}x := x-1{C}

RWTH Semantics and Verification of Software Winter Semester 2011/12 10.11

	Repetition: The Axiomatic Approach
	Proof Rules for Partial Correctness

