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Partial Correctness Properties

Validity of property {A} c {B}
For all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.
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Syntax of Assertion Language

Definition (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i .A ∈ Assn

Abbreviations:
A1 =⇒ A2 := ¬A1 ∨ A2

∃i .A := ¬(∀i .¬A)
a1 ≥ a2 := a1>a2 ∨ a1=a2

...
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Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition (Semantics of LExp)

An interpretation is an element of the set
Int := {I | I : LVar → Z}.

The value of an arithmetic expressions with logical variables is given by the
functional

LJ.K : LExp → (Int → (Σ→ Z))
where

LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ
LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ
LJiKIσ := I (i) LJa1*a2KIσ := LJa1KIσ ∗ LJa2KIσ
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Semantics of Assertions

Reminder: A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i .A ∈ Assn

Definition (Semantics of assertions)

Let A ∈ Assn, σ ∈ Σ⊥, and I ∈ Int. The relation “σ satisfies A in I”
(notation: σ |=I A) is inductively defined by:

σ |=I true
σ |=I a1=a2 if LJa1KIσ = LJa2KIσ
σ |=I a1>a2 if LJa1KIσ > LJa2KIσ
σ |=I ¬A if not σ |=I A
σ |=I A1 ∧ A2 if σ |=I A1 and σ |=I A2

σ |=I A1 ∨ A2 if σ |=I A1 or σ |=I A2

σ |=I ∀i .A if σ |=I [i 7→z] A for every z ∈ Z
⊥ |=I A

Furthermore σ satisfies A (σ |= A) if σ |=I A for every interpretation
I ∈ Int, and A is called valid (|= A) if σ |= A for every state σ ∈ Σ.
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Partial Correctness Properties

Definition (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int, we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B
(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ B I ).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ B I ).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int.
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Hoare Logic I

Goal: syntactic derivation of valid partial correctness properties

Definition 10.1 (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]} x:=a {A}

(seq)
{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

(if)
{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B}

(while)
{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}

(cons)
|= (A =⇒ A′) {A′} c {B ′} |= (B ′ =⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it is
derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

Here A[x 7→ a] denotes the syntactic replacement of every occurrence of x
by a in A.
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Hoare Logic II

Example 10.2

Proof of {A} y:=1;c {B} where
c := (while ¬(x=1) do (y:=y*x; x:=x-1))
A := (x = i)
B := (y = i !)

(on the board)

Structure of the proof:

(seq)
(cons) 4

(asgn)
5 6

2
(cons) 7

(while)
(cons) 11

(seq)
(asgn)

14
(asgn)

15
12 13

10
8 9

3
1
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Hoare Logic III

Example 10.2 (continued)

Here the respective propositions are given by:

0 C := (x > 0 =⇒ y ∗ x! = i !)
1 {A} y := 1;c {B}
2 {A} y := 1 {C}
3 {C} c {B}
4 |= (A =⇒ C [y 7→ 1])
5 {C [y 7→ 1]} y := 1 {C}
6 |= (C =⇒ C )
7 |= (C =⇒ C )
8 {C} c {¬(¬(x = 1)) ∧ C}
9 |= (¬(¬(x = 1)) ∧ C =⇒ B)

10 {¬(x = 1) ∧ C} y := y*x; x := x-1 {C}
11 |= (¬(x = 1) ∧ C =⇒ C [x 7→ x-1, y 7→ y*x])
12 {C [x 7→ x-1, y 7→ y*x]} y := y*x; x := x-1 {C}
13 |= (C =⇒ C )
14 {C [x 7→ x-1, y 7→ y*x]} y := y*x {C [x 7→ x-1]}
15 {C [x 7→ x-1]} x := x-1 {C}
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