Semantics and Verification of Software

Lecture 11: Axiomatic Semantics of WHILE Il
(Correctness of Hoare Logic)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svswill/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

@ Repetition: Hoare Logic

“er Semantics and Verification of Software Winter Semester 2011/12

Partial Correctness Properties

Definition (Partial correctness properties)
Let A,B € Assn and c € Cmd.

@ An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

@ Given o € ¥ | and | € Int, we let

o ! {A}c{B)

if o = A implies ¢[c]o ' B
(or equivalently: o € A/ = ¢[c]o € B).
o {A} c{B} is called valid in | (notation: =/ {A} c{B}) if
o = {A} c {B} for every 0 € ¥ (or equivalently: €[c]A’ C B').
o {A} c{B} is called valid (notation: |= {A} c{B}) if ! {A} c{B}
for every | € Int.

“w.rH Semantics and Verification of Software Winter Semester 2011/12 11.3

Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by

(skip)

(A} skip {A} () AL > 3} xi=a (A}
{A}q{C} 1Ce{B} 1AAb}a{B} {AA-b}ciB}
) A e (B) ") "CAT1f b then o elzs & (B}
i {AA b} c{A}

{A}while b do c{A A —b}
F(A = A) {A1c{B'} (B = B)

{A} c{B}
A partial correctness property is provable (notation: - {A} c{B}) if it is
derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

(cons)

v

Here A[x — a] denotes the syntactic replacement of every occurrence of x
by ain A.

“w.rH Semantics and Verification of Software Winter Semester 2011/12 11.4

© Soundness of Hoare Logic

“er Semantics and Verification of Software Winter Semester 2011/12

Soundness of Hoare Logic |

Soundness: no wrong propositions can be derived, i.e., every (syntactically)
provable partial correctness property is also (semantically) valid

“er Semantics and Verification of Software Winter Semester 2011/12

Soundness of Hoare Logic |

Soundness: no wrong propositions can be derived, i.e., every (syntactically)
provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 11.1 (Substitution lemma)

For every A € Assn, x € Var, a € AExp, o € X, and | € Int:
o= Alx = a] <= o[x — A[a]o] £ A.

“er Semantics and Verification of Software Winter Semester 2011/12

Soundness of Hoare Logic |

Soundness: no wrong propositions can be derived, i.e., every (syntactically)
provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 11.1 (Substitution lemma)

For every A € Assn, x € Var, a € AExp, o € X, and | € Int:
o= Alx = a] <= o[x — A[a]o] £ A.

by induction over A € Assn (omitted)

RWTH Semantics and Verification of Software Winter Semester 2011/12 11.6

Soundness of Hoare Logic Il

Theorem 11.2 (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},

F{Ajc{B} = F{A}c{B}.

Tony Hoare (* 1934)

RWTH Semantics and Verification of Software Winter Semester 2011/12 11.7

Soundness of Hoare Logic Il

Theorem 11.2 (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},

F{Ajc{B} = F{A}c{B}.

Tony Hoare (* 1934)

Let = {A} c{B}. By induction over the structure of the corresponding
proof tree we show that, for every 0 € ¥ and | € Int such that o):’ A,
¢[c]o =" B (on the board).

(If o = L, then €[c]o = L ! B holds trivially.) O

“w.rH Semantics and Verification of Software Winter Semester 2011/12 11.7

© (In-)Completeness of Hoare Logic

“er Semantics and Verification of Software Winter Semester 2011/12

Incompleteness of Hoare Logic |

Soundness: only valid partial correctness properties are provable v
Completeness: all valid partial correctness properties are systematically
derivable 4

“er Semantics and Verification of Software Winter Semester 2011/12

Incompleteness of Hoare Logic |

Soundness: only valid partial correctness properties are provable v
Completeness: all valid partial correctness properties are systematically
derivable 4

Theorem 11.3 (Godel's Incompleteness Theorem)

The set of all valid assertions
{A € Assn | = A}

is not recursively enumerable, i.e., there exists no
proof system for Assn in which all valid assertions

are systematically derivable. Kurt odeI
(1906-1978)

v

“er Semantics and Verification of Software Winter Semester 2011/12

Incompleteness of Hoare Logic |

Soundness: only valid partial correctness properties are provable v
Completeness: all valid partial correctness properties are systematically
derivable 4

Theorem 11.3 (Godel's Incompleteness Theorem)

The set of all valid assertions

(A€ Assn | = A}

is not recursively enumerable, i.e., there exists no
proof system for Assn in which all valid assertions

are systematically derivable. Kurt éédél
(1906-1978)

see [Winskel 1996, p. 110 ff] O \

“er Semantics and Verification of Software Winter Semester 2011/12 11.9

Incompleteness of Hoare Logic Il

Corollary 11.4

There is no proof system in which all valid partial correctness properties
can be enumerated.

“er Semantics and Verification of Software Winter Semester 2011/12 11.10

Incompleteness of Hoare Logic Il

Corollary 11.4

There is no proof system in which all valid partial correctness properties
can be enumerated.

Given A € Assn, |= A is obviously equivalent to {true} skip {A}. Thus the
enumerability of all valid partial correctness properties would imply the
enumerability of all valid assertions. Ol

RWTH Semantics and Verification of Software Winter Semester 2011/12 11.10

Incompleteness of Hoare Logic Il

Corollary 11.4

There is no proof system in which all valid partial correctness properties
can be enumerated.

Given A € Assn, |= A is obviously equivalent to {true} skip {A}. Thus the
enumerability of all valid partial correctness properties would imply the
enumerability of all valid assertions. Ol

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff ¢ does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.

RWTH Semantics and Verification of Software Winter Semester 2011/12 11.10

@ Relative Completeness of Hoare Logic

“er Semantics and Verification of Software Winter Semester 2011/12 11.11

Relative Completeness of Hoare Logic |

@ We will see: actual reason of incompleteness is rule

F(A = A) {A}c{B'} (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

“er Semantics and Verification of Software Winter Semester 2011/12

Relative Completeness of Hoare Logic |

@ We will see: actual reason of incompleteness is rule

F(A = A) {A}c{B'} (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

“er Semantics and Verification of Software Winter Semester 2011/12

Relative Completeness of Hoare Logic |

@ We will see: actual reason of incompleteness is rule

F(A = A) {A}c{B'} (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

“er Semantics and Verification of Software Winter Semester 2011/12 11.12

Relative Completeness of Hoare Logic |

@ We will see: actual reason of incompleteness is rule

F(A = A) {A}c{B'} (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a

given assertion is valid, then all valid partial correctness properties
can be systematically derived

“er Semantics and Verification of Software Winter Semester 2011/12 11.12

Relative Completeness of Hoare Logic |

@ We will see: actual reason of incompleteness is rule

F(A = A) {A}c{B'} (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be systematically derived

—> Relative completeness

“er Semantics and Verification of Software Winter Semester 2011/12 11.12

Relative Completeness of Hoare Logic Il

Theorem 11.5 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every
partial correctness property {A} c{B}:

F{Atc{B} = F{A}c{B}.

) Stephen A. Cook
(* 1939)

Thus: if we know that a partial correctness property is valid, then we know
that there is a corresponding derivation.

“er Semantics and Verification of Software Winter Semester 2011/12 11.13

Relative Completeness of Hoare Logic Il

Theorem 11.5 (Cook’'s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every
partial correctness property {A} c{B}:

F{Atc{B} = F{A}c{B}.

) Stephen A. Cook
(* 1939)

Thus: if we know that a partial correctness property is valid, then we know
that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {A} c1; {B}
has to be derived. This requires an intermediate assertion C € Assn such

that {A} c; {C} and {C} c» {B}. How to find it?

“er Semantics and Verification of Software Winter Semester 2011/12 11.13

Weakest Preconditions |

Definition 11.6 (Weakest precondition)

Given ¢ € Cmd, B € Assn and | € Int, the weakest precondition of B with
respect to ¢ under [is defined by:

wp'[c, B] :={o € X, | ¢[c]o &' B}.

RWTH Semantics and Verification of Software Winter Semester 2011/12 11.14

Weakest Preconditions |
Definition 11.6 (Weakest precondition)

Given ¢ € Cmd, B € Assn and | € Int, the weakest precondition of B with
respect to ¢ under [is defined by:

wp'[c, B] :={o € X, | ¢[c]o &' B}.

Corollary 11.7

For every c € Cmd, A, B € Assn, and | € Int:
0 ' {A}c{B} < A Cwp[c, B]
Q@ If Ag € Assn such that AL = wp'|[c, B] for every I € Int, then
F{Alc{B} = F(A = A)

RWTH Semantics and Verification of Software Winter Semester 2011/12 11.14

Weakest Preconditions |
Definition 11.6 (Weakest precondition)

Given ¢ € Cmd, B € Assn and | € Int, the weakest precondition of B with
respect to ¢ under [is defined by:

wp'[c, B] :={o € X, | ¢[c]o &' B}.

Corollary 11.7

For every c € Cmd, A, B € Assn, and | € Int:
0 ' {A}c{B} < A Cwp[c, B]
Q@ If Ag € Assn such that AL = wp'|[c, B] for every I € Int, then
F{Alc{B} = F(A = A)

Remark: (2) justifies the notion of weakest precondition: it is implied by
every precondition A which makes {A} ¢ {B} valid

RWTH Semantics and Verification of Software Winter Semester 2011/12 11.14

Weakest Preconditions |l

Definition 11.8 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and

B € Assn, there exists Ac g € Assn such that
A!:,B = Wpl[[c, B]

for every I € Int.

“er Semantics and Verification of Software Winter Semester 2011/12 11.15

Weakest Preconditions |l

Definition 11.8 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists Ac g € Assn such that
A!:,B = Wpl[[c, B]

for every I € Int.

Theorem 11.9 (Expressivity of)

Assn is expressive.

RWTH Semantics and Verification of Software Winter Semester 2011/12 11.15

Weakest Preconditions Il

Definition 11.8 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists Ac g € Assn such that
A!:,B = Wpl[[c, B]

for every I € Int.

Theorem 11.9 (Expressivity of)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given ¢ € Cmd and B € Assn, construct A. g € Assn with
o' Acg < €[c]o E' B (for every 0 € £, | € Int). For example:

Askip.s = B Ay.=ap = Blx+— a]
;B = AChAcz,B 000
(for while: “Godelization” of sequences of intermediate states) O
”

“w.rH Semantics and Verification of Software Winter Semester 2011/12 11.15

Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{Acg}c{B}

“er Semantics and Verification of Software Winter Semester 2011/12 11.16

Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{Acg}c{B}

by structural induction over ¢ (omitted)

RWTH Semantics and Verification of Software Winter Semester 2011/12 11.16

Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{Acg}c{B}

by structural induction over ¢ (omitted)

Proof (Cook's Completeness Theorem 11.5).

We have to show that Hoare Logic is relatively complete, i.e., that

F{Atc{B} = F{A}c{B}.

’
“w.rH Semantics and Verification of Software Winter Semester 2011/12 11.16

Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{Acg}c{B}

by structural induction over ¢ (omitted)

Proof (Cook's Completeness Theorem 11.5).

We have to show that Hoare Logic is relatively complete, i.e., that
F{Alc{B} = H~{Atc{B}
e Lemma 11.10 = F {Acg}c{B}

’
“w.rH Semantics and Verification of Software Winter Semester 2011/12 11.16

Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{Acg}c{B}

by structural induction over ¢ (omitted)

Proof (Cook's Completeness Theorem 11.5).
We have to show that Hoare Logic is relatively complete, i.e., that
F{Alc{B} = H~{Atc{B}

o Lemma 11.10 = + {A.g}c{B}
o Corollary 11.7 = (A = Acs)

’
“w.rH Semantics and Verification of Software Winter Semester 2011/12 11.16

Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{Acg}c{B}

by structural induction over ¢ (omitted)

Proof (Cook's Completeness Theorem 11.5).
We have to show that Hoare Logic is relatively complete, i.e., that
F{Alc{B} = H~{Atc{B}

o Lemma 11.10 = + {A.g}c{B}
o Corollary 11.7 = (A = Acs)
@ (cons) rule = +{A}c{B}

Ol

v

“w.rH Semantics and Verification of Software Winter Semester 2011/12 11.16

	Repetition: Hoare Logic
	Soundness of Hoare Logic
	(In-)Completeness of Hoare Logic
	Relative Completeness of Hoare Logic

