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Partial Correctness Properties

Definition (Partial correctness properties)
Let A,B € Assn and c € Cmd.

@ An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

@ Given o € ¥ | and | € Int, we let

o ! {A}c{B)

if o = A implies ¢[c]o ' B
(or equivalently: o € A/ = ¢[c]o € B).
o {A} c{B} is called valid in | (notation: =/ {A} c{B}) if
o = {A} c {B} for every 0 € ¥ (or equivalently: €[c]A’ C B').
o {A} c{B} is called valid (notation: |= {A} c{B}) if ! {A} c{B}
for every | € Int.

“w.rH Semantics and Verification of Software Winter Semester 2011/12 11.3



Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by

(skip)

(A} skip {A} () AL > 3} xi=a (A}
{A}q{C} 1Ce{B}  1AAb}a{B} {AA-b}ciB}
) A e (B) ") "CAT1f b then o elzs & (B}
i {AA b} c{A}

{A}while b do c{A A —b}
F(A = A) {A1c{B'} (B = B)

{A} c{B}
A partial correctness property is provable (notation: - {A} c{B}) if it is
derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

(cons)

v

Here A[x — a] denotes the syntactic replacement of every occurrence of x
by ain A.
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© Soundness of Hoare Logic
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Soundness of Hoare Logic |

Soundness: no wrong propositions can be derived, i.e., every (syntactically)
provable partial correctness property is also (semantically) valid
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Soundness of Hoare Logic |

Soundness: no wrong propositions can be derived, i.e., every (syntactically)
provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 11.1 (Substitution lemma)

For every A € Assn, x € Var, a € AExp, o € X, and | € Int:
o= Alx = a] <= o[x — A[a]o] £ A.
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Soundness of Hoare Logic |

Soundness: no wrong propositions can be derived, i.e., every (syntactically)
provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 11.1 (Substitution lemma)

For every A € Assn, x € Var, a € AExp, o € X, and | € Int:
o= Alx = a] <= o[x — A[a]o] £ A.

by induction over A € Assn (omitted)
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Soundness of Hoare Logic Il

Theorem 11.2 (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},

F{Ajc{B} = F{A}c{B}.

Tony Hoare (* 1934)
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Soundness of Hoare Logic Il

Theorem 11.2 (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},

F{Ajc{B} = F{A}c{B}.

Tony Hoare (* 1934)

Let = {A} c{B}. By induction over the structure of the corresponding
proof tree we show that, for every 0 € ¥ and | € Int such that o ):’ A,
¢[c]o =" B (on the board).

(If o = L, then €[c]o = L ! B holds trivially.) O
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© (In-)Completeness of Hoare Logic
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Incompleteness of Hoare Logic |

Soundness: only valid partial correctness properties are provable v
Completeness: all valid partial correctness properties are systematically
derivable 4
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Incompleteness of Hoare Logic |

Soundness: only valid partial correctness properties are provable v
Completeness: all valid partial correctness properties are systematically
derivable 4

Theorem 11.3 (Godel's Incompleteness Theorem)

The set of all valid assertions
{A € Assn | = A}

is not recursively enumerable, i.e., there exists no
proof system for Assn in which all valid assertions

are systematically derivable. Kurt odeI
(1906-1978)

v
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Incompleteness of Hoare Logic |

Soundness: only valid partial correctness properties are provable v
Completeness: all valid partial correctness properties are systematically
derivable 4

Theorem 11.3 (Godel's Incompleteness Theorem)

The set of all valid assertions

(A€ Assn | = A}

is not recursively enumerable, i.e., there exists no
proof system for Assn in which all valid assertions

are systematically derivable. Kurt éédél
(1906-1978)

see [Winskel 1996, p. 110 ff] O \
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Incompleteness of Hoare Logic Il

Corollary 11.4

There is no proof system in which all valid partial correctness properties
can be enumerated.
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Incompleteness of Hoare Logic Il

Corollary 11.4

There is no proof system in which all valid partial correctness properties
can be enumerated.

Given A € Assn, |= A is obviously equivalent to {true} skip {A}. Thus the
enumerability of all valid partial correctness properties would imply the
enumerability of all valid assertions. Ol
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Incompleteness of Hoare Logic Il

Corollary 11.4

There is no proof system in which all valid partial correctness properties
can be enumerated.

Given A € Assn, |= A is obviously equivalent to {true} skip {A}. Thus the
enumerability of all valid partial correctness properties would imply the
enumerability of all valid assertions. Ol

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff ¢ does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.
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@ Relative Completeness of Hoare Logic
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Relative Completeness of Hoare Logic |

@ We will see: actual reason of incompleteness is rule

F(A = A) {A}c{B'} (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)
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Relative Completeness of Hoare Logic |

@ We will see: actual reason of incompleteness is rule

F(A = A) {A}c{B'} (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”
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Relative Completeness of Hoare Logic |

@ We will see: actual reason of incompleteness is rule

F(A = A) {A}c{B'} (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)
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Relative Completeness of Hoare Logic |

@ We will see: actual reason of incompleteness is rule

F(A = A) {A}c{B'} (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a

given assertion is valid, then all valid partial correctness properties
can be systematically derived
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Relative Completeness of Hoare Logic |

@ We will see: actual reason of incompleteness is rule

F(A = A) {A}c{B'} (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be systematically derived

—> Relative completeness
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Relative Completeness of Hoare Logic Il

Theorem 11.5 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every
partial correctness property {A} c{B}:

F{Atc{B} = F{A}c{B}.

) Stephen A. Cook
(* 1939)

Thus: if we know that a partial correctness property is valid, then we know
that there is a corresponding derivation.
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Relative Completeness of Hoare Logic Il

Theorem 11.5 (Cook’'s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every
partial correctness property {A} c{B}:

F{Atc{B} = F{A}c{B}.

) Stephen A. Cook
(* 1939)

Thus: if we know that a partial correctness property is valid, then we know
that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {A} c1; {B}
has to be derived. This requires an intermediate assertion C € Assn such

that {A} c; {C} and {C} c» {B}. How to find it?
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Weakest Preconditions |

Definition 11.6 (Weakest precondition)

Given ¢ € Cmd, B € Assn and | € Int, the weakest precondition of B with
respect to ¢ under [ is defined by:

wp'[c, B] :={o € X, | ¢[c]o &' B}.
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Weakest Preconditions |
Definition 11.6 (Weakest precondition)

Given ¢ € Cmd, B € Assn and | € Int, the weakest precondition of B with
respect to ¢ under [ is defined by:

wp'[c, B] :={o € X, | ¢[c]o &' B}.

Corollary 11.7

For every c € Cmd, A, B € Assn, and | € Int:
0 ' {A}c{B} < A Cwp[c, B]
Q@ If Ag € Assn such that AL = wp'|[c, B] for every I € Int, then
F{Alc{B} = F(A = A)
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Weakest Preconditions |
Definition 11.6 (Weakest precondition)

Given ¢ € Cmd, B € Assn and | € Int, the weakest precondition of B with
respect to ¢ under [ is defined by:

wp'[c, B] :={o € X, | ¢[c]o &' B}.

Corollary 11.7

For every c € Cmd, A, B € Assn, and | € Int:
0 ' {A}c{B} < A Cwp[c, B]
Q@ If Ag € Assn such that AL = wp'|[c, B] for every I € Int, then
F{Alc{B} = F(A = A)

Remark: (2) justifies the notion of weakest precondition: it is implied by
every precondition A which makes {A} ¢ {B} valid
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Weakest Preconditions |l

Definition 11.8 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and

B € Assn, there exists Ac g € Assn such that
A!:,B = Wpl[[c, B]

for every I € Int.
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Weakest Preconditions |l

Definition 11.8 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists Ac g € Assn such that
A!:,B = Wpl[[c, B]

for every I € Int.

Theorem 11.9 (Expressivity of )

Assn is expressive.
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Weakest Preconditions Il

Definition 11.8 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists Ac g € Assn such that
A!:,B = Wpl[[c, B]

for every I € Int.

Theorem 11.9 (Expressivity of )

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given ¢ € Cmd and B € Assn, construct A. g € Assn with
o' Acg < €[c]o E' B (for every 0 € £, | € Int). For example:

Askip.s = B Ay.=ap = Blx+— a]
;B = AChAcz,B 000
(for while: “Godelization” of sequences of intermediate states) O
”
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Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{Acg}c{B}
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Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{Acg}c{B}

by structural induction over ¢ (omitted)
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Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{Acg}c{B}

by structural induction over ¢ (omitted)

Proof (Cook's Completeness Theorem 11.5).

We have to show that Hoare Logic is relatively complete, i.e., that

F{Atc{B} = F{A}c{B}.

’
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Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{Acg}c{B}

by structural induction over ¢ (omitted)

Proof (Cook's Completeness Theorem 11.5).

We have to show that Hoare Logic is relatively complete, i.e., that
F{Alc{B} = H~{Atc{B}
e Lemma 11.10 = F {Acg}c{B}

’
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Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{Acg}c{B}

by structural induction over ¢ (omitted)

Proof (Cook's Completeness Theorem 11.5).
We have to show that Hoare Logic is relatively complete, i.e., that
F{Alc{B} = H~{Atc{B}

o Lemma 11.10 = + {A.g}c{B}
o Corollary 11.7 = (A = Acs)

’
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Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

For every c € Cmd and B € Assn:
F{Acg}c{B}

by structural induction over ¢ (omitted)

Proof (Cook's Completeness Theorem 11.5).
We have to show that Hoare Logic is relatively complete, i.e., that
F{Alc{B} = H~{Atc{B}

o Lemma 11.10 = + {A.g}c{B}
o Corollary 11.7 = (A = Acs)
@ (cons) rule = +{A}c{B}

Ol

v
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