

Semantics and Verification of Software

Lecture 11: Axiomatic Semantics of WHILE III (Correctness of Hoare Logic)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw11/>

Winter Semester 2011/12

- 1 Repetition: Hoare Logic
- 2 Soundness of Hoare Logic
- 3 (In-)Completeness of Hoare Logic
- 4 Relative Completeness of Hoare Logic

Definition (Partial correctness properties)

Let $A, B \in \text{Assn}$ and $c \in \text{Cmd}$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \implies \mathfrak{C}[c]\sigma \in B^I$).

- $\{A\} c \{B\}$ is called **valid in** I (notation: $\models^I \{A\} c \{B\}$) if $\sigma \models^I \{A\} c \{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[c]A^I \subseteq B^I$).
- $\{A\} c \{B\}$ is called **valid** (notation: $\models \{A\} c \{B\}$) if $\models^I \{A\} c \{B\}$ for every $I \in \text{Int}$.

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The **Hoare rules** are given by

$$\begin{array}{c} \text{(skip)} \frac{}{\{A\} \text{ skip } \{A\}} \qquad \text{(asgn)} \frac{}{\{A[x \mapsto a]\} x := a \{A\}} \\ \text{(seq)} \frac{\{A\} c_1 \{C\} \quad \{C\} c_2 \{B\}}{\{A\} c_1; c_2 \{B\}} \qquad \text{(if)} \frac{\{A \wedge b\} c_1 \{B\} \quad \{A \wedge \neg b\} c_2 \{B\}}{\{A\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{B\}} \\ \text{(while)} \frac{\{A \wedge b\} c \{A\}}{\{A\} \text{ while } b \text{ do } c \{A \wedge \neg b\}} \\ \text{(cons)} \frac{\models (A \Rightarrow A') \quad \{A'\} c \{B'\} \quad \models (B' \Rightarrow B)}{\{A\} c \{B\}} \end{array}$$

A partial correctness property is **provable** (notation: $\vdash \{A\} c \{B\}$) if it is derivable by the Hoare rules. In case of (while), A is called a **(loop) invariant**.

Here $A[x \mapsto a]$ denotes the syntactic replacement of every occurrence of x by a in A .

- 1 Repetition: Hoare Logic
- 2 Soundness of Hoare Logic
- 3 (In-)Completeness of Hoare Logic
- 4 Relative Completeness of Hoare Logic

Soundness: no wrong propositions can be derived, i.e., every (syntactically) provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 11.1 (Substitution lemma)

For every $A \in \text{Assn}$, $x \in \text{Var}$, $a \in A\text{Exp}$, $\sigma \in \Sigma$, and $I \in \text{Int}$:

$$\sigma \models^I A[x \mapsto a] \iff \sigma[x \mapsto \mathfrak{A}[a]\sigma] \models^I A.$$

Proof.

by induction over $A \in \text{Assn}$ (omitted)

Soundness of Hoare Logic II

Theorem 11.2 (Soundness of Hoare Logic)

For every partial correctness property $\{A\} c \{B\}$,

$$\vdash \{A\} c \{B\} \implies \models \{A\} c \{B\}.$$

Tony Hoare (* 1934)

Proof.

Let $\vdash \{A\} c \{B\}$. By induction over the structure of the corresponding proof tree we show that, for every $\sigma \in \Sigma$ and $I \in \text{Int}$ such that $\sigma \models^I A$, $\mathfrak{C}[c]\sigma \models^I B$ (on the board).

(If $\sigma = \perp$, then $\mathfrak{C}[c]\sigma = \perp \models^I B$ holds trivially.)

- 1 Repetition: Hoare Logic
- 2 Soundness of Hoare Logic
- 3 (In-)Completeness of Hoare Logic
- 4 Relative Completeness of Hoare Logic

Soundness: only valid partial correctness properties are provable ✓

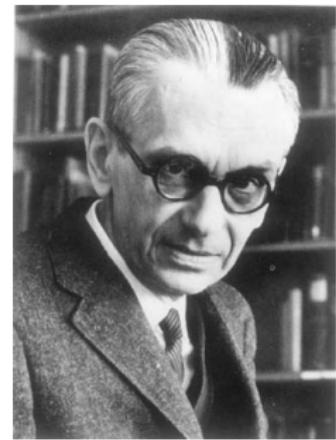
Completeness: all valid partial correctness properties are systematically derivable ↗

Theorem 11.3 (Gödel's Incompleteness Theorem)

The set of all valid assertions

$$\{A \in \text{Assn} \mid \models A\}$$

is not recursively enumerable, i.e., there exists no proof system for Assn in which all valid assertions are systematically derivable.



Kurt Gödel
(1906–1978)

Proof.

see [Winskel 1996, p. 110 ff]

Corollary 11.4

There is no proof system in which all valid partial correctness properties can be enumerated.

Proof.

Given $A \in \text{Assn}$, $\models A$ is obviously equivalent to $\{\text{true}\} \text{ skip } \{A\}$. Thus the enumerability of all valid partial correctness properties would imply the enumerability of all valid assertions. □

Remark: alternative proof (using computability theory):

$\{\text{true}\} c \{\text{false}\}$ is valid iff c does not terminate on any input state. But the set of all non-terminating WHILE statements is not enumerable.

- 1 Repetition: Hoare Logic
- 2 Soundness of Hoare Logic
- 3 (In-)Completeness of Hoare Logic
- 4 Relative Completeness of Hoare Logic

- We will see: actual reason of incompleteness is rule

$$\text{(cons)} \frac{\models (A \Rightarrow A') \quad \{A'\} c \{B'\} \quad \models (B' \Rightarrow B)}{\{A\} c \{B\}}$$

since it is based on the **validity of implications** within *Assn*

- The other language constructs are “enumerable”
- Therefore: **separation** of proof system (Hoare Logic) and assertion language (*Assn*)
- One can show: if an “oracle” is available which decides whether a given assertion is valid, then all valid partial correctness properties can be systematically derived

⇒ **Relative completeness**

Theorem 11.5 (Cook's Completeness Theorem)

Hoare Logic is *relatively complete*, i.e., for every partial correctness property $\{A\} c \{B\}$:

$$\models \{A\} c \{B\} \implies \vdash \{A\} c \{B\}.$$

Stephen A. Cook
(* 1939)

Thus: if we know that a partial correctness property is valid, then we know that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., $\{A\} c_1 ; c_2 \{B\}$ has to be derived. This requires an *intermediate assertion* $C \in \text{Assn}$ such that $\{A\} c_1 \{C\}$ and $\{C\} c_2 \{B\}$. How to find it?

Definition 11.6 (Weakest precondition)

Given $c \in \text{Cmd}$, $B \in \text{Assn}$ and $I \in \text{Int}$, the **weakest precondition** of B with respect to c under I is defined by:

$$wp^I[c, B] := \{\sigma \in \Sigma_{\perp} \mid \mathfrak{C}[c]\sigma \models^I B\}.$$

Corollary 11.7

For every $c \in \text{Cmd}$, $A, B \in \text{Assn}$, and $I \in \text{Int}$:

- ① $\models^I \{A\} c \{B\} \iff A^I \subseteq wp^I[c, B]$
- ② If $A_0 \in \text{Assn}$ such that $A_0^I = wp^I[c, B]$ for every $I \in \text{Int}$, then
 $\models \{A\} c \{B\} \iff \models (A \Rightarrow A_0)$

Remark: (2) justifies the notion of **weakest** precondition: it is implied by every precondition A which makes $\{A\} c \{B\}$ valid

Definition 11.8 (Expressivity of assertion languages)

An assertion language Assn is called **expressive** if, for every $c \in \text{Cmd}$ and $B \in \text{Assn}$, there exists $A_{c,B} \in \text{Assn}$ such that

$$A_{c,B}^I = \text{wp}^I[c, B]$$

for every $I \in \text{Int}$.

Theorem 11.9 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])

Given $c \in \text{Cmd}$ and $B \in \text{Assn}$, construct $A_{c,B} \in \text{Assn}$ with
 $\sigma \models^I A_{c,B} \iff \mathfrak{C}[c]\sigma \models^I B$ (for every $\sigma \in \Sigma_\perp$, $I \in \text{Int}$). For example:

$$\begin{aligned} A_{\text{skip},B} &:= B & A_{x:=a,B} &:= B[x \mapsto a] \\ A_{c_1;c_2,B} &:= A_{c_1,A_{c_2,B}} & \dots \end{aligned}$$

(for **while**: “Gödelization” of sequences of intermediate states)

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 11.10

For every $c \in \text{Cmd}$ and $B \in \text{Assn}$:

$$\vdash \{A_{c,B}\} c \{B\}$$

Proof.

by structural induction over c (omitted) □

Proof (Cook's Completeness Theorem 11.5).

We have to show that Hoare Logic is relatively complete, i.e., that

$$\models \{A\} c \{B\} \implies \vdash \{A\} c \{B\}.$$

- Lemma 11.10 $\implies \vdash \{A_{c,B}\} c \{B\}$
- Corollary 11.7 $\implies \models (A \implies A_{c,B})$
- (cons) rule $\implies \vdash \{A\} c \{B\}$

□