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Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]} x:=a {A}

(seq)
{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

(if)
{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B}

(while)
{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}

(cons)
|= (A⇒ A′) {A′} c {B ′} |= (B ′ ⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it is
derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

Here A[x 7→ a] denotes the syntactic replacement of every occurrence of x
by a in A.
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Soundness of Hoare Logic

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},

` {A} c {B} ⇒ |= {A} c {B}.

Tony Hoare (* 1934)

Proof.

Let ` {A} c {B}. By induction over the structure of the corresponding
proof tree we show that, for every σ ∈ Σ and I ∈ Int such that σ |=I A,
CJcKσ |=I B (on the board).
(If σ = ⊥, then CJcKσ = ⊥ |=I B holds trivially.)
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(Relative) Completeness of Hoare Logic

Corollary

There is no proof system in which all valid partial correctness properties
can be enumerated.

Theorem (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every
partial correctness property {A} c {B}:

|= {A} c {B} ⇒ ` {A} c {B}.

Stephen A. Cook
(* 1939)
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Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

Consider total correctness properties of the form

{A} c {⇓B}

where c ∈ Cmd and A,B ∈ Assn

Interpretation:

Validity of property {A} c {⇓B}
For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.
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Semantics of Total Correctness Properties

Definition 12.1 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

{A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if
σ |=I {A} c {⇓B} for every σ ∈ Σ.

{A} c {⇓B} is called valid (notation: |= {A} c {B}) if
|=I {A} c {⇓B} for every I ∈ Int.
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Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 12.2 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)
{A} skip {⇓A}

(asgn)
{A[x 7→ a]} x := a {⇓A}

(seq)
{A} c1 {⇓C} {C} c2 {⇓B}

{A} c1;c2 {⇓B}
(if)
{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}
{A} if b then c1 else c2 {⇓B}

(while)
|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i .i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

(cons)
|= (A⇒ A′) {A′} c {⇓B ′} |= (B ′ ⇒ B)

{A} c {⇓B}

where i ∈ LVar .
A total correctness property is provable (notation: ` {A} c {⇓B}) if it is derivable
by the Hoare rules. In case of (while), A(i) is called a (loop) invariant.
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Proving Total Correctness II

In rule

(while)
|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i .i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically depends
on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Loop to be traversed i + 1 times (i ≥ 0)
⇒ A(i + 1) holds
⇒ execution condition b satisfied

Thus: |= (i ≥ 0 ∧ A(i + 1)⇒ b), and i + 1 decreased to i after
execution of c

Execution terminated
⇒ A(0) holds
⇒ execution condition b violated

Thus: |= (A(0)⇒ ¬b)
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Total Correctness of Factorial Program

Example 12.3

Proof of {A} y:=1;c {⇓B} where

A := (x > 0 ∧ x = i)
c := while ¬(x=1) do (y:=y*x; x:=x-1)
B := (y = i !)

(on the board)
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Soundness

In analogy to Theorem 11.2 we can show that the Hoare Logic for total
correctness properties is also sound:

Theorem 12.4 (Soundness)

For every total correctness property {A} c {⇓B},

` {A} c {⇓B} ⇒ |= {A} c {⇓B}.

Proof.

again by structural induction over the derivation tree of ` {A} c {⇓B}
(only (while) case; on the board)
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Relative Completeness

Also the counterpart to Cook’s Completeness Theorem 11.5 applies:

Theorem 12.5 (Completeness)

The Hoare Logic for total correctness properties is relatively complete, i.e.,
for every {A} c {⇓B}:

|= {A} c {⇓B} ⇒ ` {A} c {⇓B}.

Proof.

omitted
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