
Semantics and Verification of Software
Lecture 13: Axiomatic Semantics of WHILE V

(Semantic Equivalence)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Outline

1 Repetition: Partial and Total Correctness

2 Equivalence of Axiomatic and Operational/Denotational Semantics

3 Summary: Axiomatic Semantics

Semantics and Verification of Software Winter Semester 2011/12 13.2

Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]} x:=a {A}

(seq)
{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

(if)
{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B}

(while)
{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}

(cons)
|= (A⇒ A′) {A′} c {B ′} |= (B ′ ⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it is
derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

Here A[x 7→ a] denotes the syntactic replacement of every occurrence of x
by a in A.

Semantics and Verification of Software Winter Semester 2011/12 13.3

Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)
{A} skip {⇓A}

(asgn)
{A[x 7→ a]} x := a {⇓A}

(seq)
{A} c1 {⇓C} {C} c2 {⇓B}

{A} c1;c2 {⇓B}
(if)
{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}
{A} if b then c1 else c2 {⇓B}

(while)
|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i .i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

(cons)
|= (A⇒ A′) {A′} c {⇓B ′} |= (B ′ ⇒ B)

{A} c {⇓B}

where i ∈ LVar .
A total correctness property is provable (notation: ` {A} c {⇓B}) if it is derivable
by the Hoare rules. In case of (while), A(i) is called a (loop) invariant.

Semantics and Verification of Software Winter Semester 2011/12 13.4

Outline

1 Repetition: Partial and Total Correctness

2 Equivalence of Axiomatic and Operational/Denotational Semantics

3 Summary: Axiomatic Semantics

Semantics and Verification of Software Winter Semester 2011/12 13.5

Operational and Denotational Equivalence

Definition 4.1: OJ.K : Cmd → (Σ 99K Σ) given by

OJcK(σ) = σ′ ⇐⇒ 〈c , σ〉 → σ′

Definition 4.2: Two statements c1, c2 ∈ Cmd are operationally equivalent
(notation: c1 ∼ c2) if

OJc1K = OJc2K.

Theorem 8.2: For every c ∈ Cmd ,

OJcK = CJcK,

i.e., OJ.K = CJ.K.

Semantics and Verification of Software Winter Semester 2011/12 13.6

Operational and Denotational Equivalence

Definition 4.1: OJ.K : Cmd → (Σ 99K Σ) given by

OJcK(σ) = σ′ ⇐⇒ 〈c , σ〉 → σ′

Definition 4.2: Two statements c1, c2 ∈ Cmd are operationally equivalent
(notation: c1 ∼ c2) if

OJc1K = OJc2K.

Theorem 8.2: For every c ∈ Cmd ,

OJcK = CJcK,

i.e., OJ.K = CJ.K.

Semantics and Verification of Software Winter Semester 2011/12 13.6

Operational and Denotational Equivalence

Definition 4.1: OJ.K : Cmd → (Σ 99K Σ) given by

OJcK(σ) = σ′ ⇐⇒ 〈c , σ〉 → σ′

Definition 4.2: Two statements c1, c2 ∈ Cmd are operationally equivalent
(notation: c1 ∼ c2) if

OJc1K = OJc2K.

Theorem 8.2: For every c ∈ Cmd ,

OJcK = CJcK,

i.e., OJ.K = CJ.K.

Semantics and Verification of Software Winter Semester 2011/12 13.6

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered
equivalent if they are indistinguishable w.r.t. partial correctness properties:

Definition 13.1 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent
(notation: c1 ≈ c2) if, for all assertions A,B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

Semantics and Verification of Software Winter Semester 2011/12 13.7

Axiomatic Equivalence II

Example 13.2

We show that
while b do c ≈ if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A,B ∈ Assn:
|= {A} while b do c {B}

⇐⇒ ` {A} while b do c {B} (Theorem 11.2, 11.5)
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C} while b do c {C ∧ ¬b} (rule (cons))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c {C} (rule (while))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c;while b do c {C ∧ ¬b} (rule (seq)),
` {C ∧ ¬b} skip {C ∧ ¬b} (rule (skip))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C} if b then (c;while b do c) else skip {C ∧ ¬b} (rule (if))

⇐⇒ ` {A} if b then (c;while b do c) else skip {B} (rule (cons))
⇐⇒ |= {A} if b then (c;while b do c) else skip {B}

(Theorem 11.2, 11.5)

Semantics and Verification of Software Winter Semester 2011/12 13.8

Axiomatic Equivalence II

Example 13.2

We show that
while b do c ≈ if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A,B ∈ Assn:
|= {A} while b do c {B}

⇐⇒ ` {A} while b do c {B} (Theorem 11.2, 11.5)

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C} while b do c {C ∧ ¬b} (rule (cons))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C ∧ b} c {C} (rule (while))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C ∧ b} c;while b do c {C ∧ ¬b} (rule (seq)),
` {C ∧ ¬b} skip {C ∧ ¬b} (rule (skip))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C} if b then (c;while b do c) else skip {C ∧ ¬b} (rule (if))

⇐⇒ ` {A} if b then (c;while b do c) else skip {B} (rule (cons))
⇐⇒ |= {A} if b then (c;while b do c) else skip {B}

(Theorem 11.2, 11.5)

Semantics and Verification of Software Winter Semester 2011/12 13.8

Axiomatic Equivalence II

Example 13.2

We show that
while b do c ≈ if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A,B ∈ Assn:
|= {A} while b do c {B}

⇐⇒ ` {A} while b do c {B} (Theorem 11.2, 11.5)
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C} while b do c {C ∧ ¬b} (rule (cons))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C ∧ b} c {C} (rule (while))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C ∧ b} c;while b do c {C ∧ ¬b} (rule (seq)),
` {C ∧ ¬b} skip {C ∧ ¬b} (rule (skip))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C} if b then (c;while b do c) else skip {C ∧ ¬b} (rule (if))

⇐⇒ ` {A} if b then (c;while b do c) else skip {B} (rule (cons))
⇐⇒ |= {A} if b then (c;while b do c) else skip {B}

(Theorem 11.2, 11.5)

Semantics and Verification of Software Winter Semester 2011/12 13.8

Axiomatic Equivalence II

Example 13.2

We show that
while b do c ≈ if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A,B ∈ Assn:
|= {A} while b do c {B}

⇐⇒ ` {A} while b do c {B} (Theorem 11.2, 11.5)
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C} while b do c {C ∧ ¬b} (rule (cons))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c {C} (rule (while))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C ∧ b} c;while b do c {C ∧ ¬b} (rule (seq)),
` {C ∧ ¬b} skip {C ∧ ¬b} (rule (skip))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C} if b then (c;while b do c) else skip {C ∧ ¬b} (rule (if))

⇐⇒ ` {A} if b then (c;while b do c) else skip {B} (rule (cons))
⇐⇒ |= {A} if b then (c;while b do c) else skip {B}

(Theorem 11.2, 11.5)

Semantics and Verification of Software Winter Semester 2011/12 13.8

Axiomatic Equivalence II

Example 13.2

We show that
while b do c ≈ if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A,B ∈ Assn:
|= {A} while b do c {B}

⇐⇒ ` {A} while b do c {B} (Theorem 11.2, 11.5)
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C} while b do c {C ∧ ¬b} (rule (cons))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c {C} (rule (while))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c;while b do c {C ∧ ¬b} (rule (seq)),
` {C ∧ ¬b} skip {C ∧ ¬b} (rule (skip))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C} if b then (c;while b do c) else skip {C ∧ ¬b} (rule (if))

⇐⇒ ` {A} if b then (c;while b do c) else skip {B} (rule (cons))
⇐⇒ |= {A} if b then (c;while b do c) else skip {B}

(Theorem 11.2, 11.5)

Semantics and Verification of Software Winter Semester 2011/12 13.8

Axiomatic Equivalence II

Example 13.2

We show that
while b do c ≈ if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A,B ∈ Assn:
|= {A} while b do c {B}

⇐⇒ ` {A} while b do c {B} (Theorem 11.2, 11.5)
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C} while b do c {C ∧ ¬b} (rule (cons))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c {C} (rule (while))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c;while b do c {C ∧ ¬b} (rule (seq)),
` {C ∧ ¬b} skip {C ∧ ¬b} (rule (skip))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C} if b then (c;while b do c) else skip {C ∧ ¬b} (rule (if))

⇐⇒ ` {A} if b then (c;while b do c) else skip {B} (rule (cons))
⇐⇒ |= {A} if b then (c;while b do c) else skip {B}

(Theorem 11.2, 11.5)

Semantics and Verification of Software Winter Semester 2011/12 13.8

Axiomatic Equivalence II

Example 13.2

We show that
while b do c ≈ if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A,B ∈ Assn:
|= {A} while b do c {B}

⇐⇒ ` {A} while b do c {B} (Theorem 11.2, 11.5)
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C} while b do c {C ∧ ¬b} (rule (cons))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c {C} (rule (while))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c;while b do c {C ∧ ¬b} (rule (seq)),
` {C ∧ ¬b} skip {C ∧ ¬b} (rule (skip))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C} if b then (c;while b do c) else skip {C ∧ ¬b} (rule (if))

⇐⇒ ` {A} if b then (c;while b do c) else skip {B} (rule (cons))

⇐⇒ |= {A} if b then (c;while b do c) else skip {B}
(Theorem 11.2, 11.5)

Semantics and Verification of Software Winter Semester 2011/12 13.8

Axiomatic Equivalence II

Example 13.2

We show that
while b do c ≈ if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A,B ∈ Assn:
|= {A} while b do c {B}

⇐⇒ ` {A} while b do c {B} (Theorem 11.2, 11.5)
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C} while b do c {C ∧ ¬b} (rule (cons))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c {C} (rule (while))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c;while b do c {C ∧ ¬b} (rule (seq)),
` {C ∧ ¬b} skip {C ∧ ¬b} (rule (skip))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C} if b then (c;while b do c) else skip {C ∧ ¬b} (rule (if))

⇐⇒ ` {A} if b then (c;while b do c) else skip {B} (rule (cons))
⇐⇒ |= {A} if b then (c;while b do c) else skip {B}

(Theorem 11.2, 11.5)

Semantics and Verification of Software Winter Semester 2011/12 13.8

Axiomatic Equivalence III

The following result shows that considering total rather than partial
correctness properties yields the same notion of equivalence:

Theorem 13.3

Let c1, c2 ∈ Cmd. The following propositions are equivalent:

1 ∀A,B ∈ Assn : |= {A} c1 {B} ⇐⇒ |= {A} c2 {B}
2 ∀A,B ∈ Assn : |= {A} c1 {⇓B} ⇐⇒ |= {A} c2 {⇓B}

Proof.

omitted

Semantics and Verification of Software Winter Semester 2011/12 13.9

Axiomatic Equivalence III

The following result shows that considering total rather than partial
correctness properties yields the same notion of equivalence:

Theorem 13.3

Let c1, c2 ∈ Cmd. The following propositions are equivalent:

1 ∀A,B ∈ Assn : |= {A} c1 {B} ⇐⇒ |= {A} c2 {B}
2 ∀A,B ∈ Assn : |= {A} c1 {⇓B} ⇐⇒ |= {A} c2 {⇓B}

Proof.

omitted

Semantics and Verification of Software Winter Semester 2011/12 13.9

Axiomatic vs. Denotational/Operational Equiv. I

Theorem 13.4

Axiomatic and denotational/operational equivalence coincide, i.e., for all
c1, c2 ∈ Cmd,

c1 ≈ c2 ⇐⇒ c1 ∼ c2.

The proof is based of the following encoding of states by assertions:

Definition 13.5

Given a finite subset of program variables X ⊆ Var and a state σ ∈ Σ, the
characteristic assertion of σ w.r.t. X is given by

State(σ,X) :=
∧
x∈X

(x = σ(x)︸︷︷︸
∈Z

) ∈ Assn

Moreover, we let State(⊥,X) := false.

Semantics and Verification of Software Winter Semester 2011/12 13.10

Axiomatic vs. Denotational/Operational Equiv. I

Theorem 13.4

Axiomatic and denotational/operational equivalence coincide, i.e., for all
c1, c2 ∈ Cmd,

c1 ≈ c2 ⇐⇒ c1 ∼ c2.

The proof is based of the following encoding of states by assertions:

Definition 13.5

Given a finite subset of program variables X ⊆ Var and a state σ ∈ Σ, the
characteristic assertion of σ w.r.t. X is given by

State(σ,X) :=
∧
x∈X

(x = σ(x)︸︷︷︸
∈Z

) ∈ Assn

Moreover, we let State(⊥,X) := false.

Semantics and Verification of Software Winter Semester 2011/12 13.10

Axiomatic vs. Denotational/Operational Equiv. II

Programs and characteristic state assertions are obviously related in the
following way:

Corollary 13.6

Let c ∈ Cmd, and let FV (c) ⊆ Var denote the set of all variables
occurring in c. Then, for every finite X ⊇ FV (c) and σ ∈ Σ,

{State(σ,X)} c {State(CJcKσ,X)}

Example 13.7 (Factorial program)

For c := (y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)), X = {x, y},
σ(x) = 3, and σ(y) = 0, we obtain

State(σ,X) = (x=3 ∧ y=0)
State(CJcKσ,X) = (x=1 ∧ y=6)

Proof (Theorem 13.4).

on the board

Semantics and Verification of Software Winter Semester 2011/12 13.11

Axiomatic vs. Denotational/Operational Equiv. II

Programs and characteristic state assertions are obviously related in the
following way:

Corollary 13.6

Let c ∈ Cmd, and let FV (c) ⊆ Var denote the set of all variables
occurring in c. Then, for every finite X ⊇ FV (c) and σ ∈ Σ,

{State(σ,X)} c {State(CJcKσ,X)}

Example 13.7 (Factorial program)

For c := (y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)), X = {x, y},
σ(x) = 3, and σ(y) = 0, we obtain

State(σ,X) = (x=3 ∧ y=0)
State(CJcKσ,X) = (x=1 ∧ y=6)

Proof (Theorem 13.4).

on the board

Semantics and Verification of Software Winter Semester 2011/12 13.11

Axiomatic vs. Denotational/Operational Equiv. II

Programs and characteristic state assertions are obviously related in the
following way:

Corollary 13.6

Let c ∈ Cmd, and let FV (c) ⊆ Var denote the set of all variables
occurring in c. Then, for every finite X ⊇ FV (c) and σ ∈ Σ,

{State(σ,X)} c {State(CJcKσ,X)}

Example 13.7 (Factorial program)

For c := (y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)), X = {x, y},
σ(x) = 3, and σ(y) = 0, we obtain

State(σ,X) = (x=3 ∧ y=0)
State(CJcKσ,X) = (x=1 ∧ y=6)

Proof (Theorem 13.4).

on the board

Semantics and Verification of Software Winter Semester 2011/12 13.11

Outline

1 Repetition: Partial and Total Correctness

2 Equivalence of Axiomatic and Operational/Denotational Semantics

3 Summary: Axiomatic Semantics

Semantics and Verification of Software Winter Semester 2011/12 13.12

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
⇒ machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

Software engineering aspect: integrated development of program and
proof (cf. assertions in Java)

Semantics and Verification of Software Winter Semester 2011/12 13.13

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
⇒ machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

Software engineering aspect: integrated development of program and
proof (cf. assertions in Java)

Semantics and Verification of Software Winter Semester 2011/12 13.13

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
⇒ machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

Software engineering aspect: integrated development of program and
proof (cf. assertions in Java)

Semantics and Verification of Software Winter Semester 2011/12 13.13

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
⇒ machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

Software engineering aspect: integrated development of program and
proof (cf. assertions in Java)

Semantics and Verification of Software Winter Semester 2011/12 13.13

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
⇒ machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

Software engineering aspect: integrated development of program and
proof (cf. assertions in Java)

Semantics and Verification of Software Winter Semester 2011/12 13.13

	Repetition: Partial and Total Correctness
	Equivalence of Axiomatic and Operational/Denotational Semantics
	Summary: Axiomatic Semantics

