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Hoare Logic

Goal: syntactic derivation of valid partial correctness properties

Definition (Hoare Logic)

The Hoare rules are given by
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(A} skip {A} () AL > 3} xi=a (A}
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{A}while b do c{A A —b}
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{A} c{B}
A partial correctness property is provable (notation: - {A} c{B}) if it is
derivable by the Hoare rules. In case of (while), A is called a (loop)
invariant.

(cons)

v

Here A[x — a] denotes the syntactic replacement of every occurrence of x
by ain A.
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Proving Total Correctness |

Goal: syntactic derivation of valid total correctness properties

Definition (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

" {ayoip (1A} S il al)x = 2 (UA)
(sea) {Ata i ¢} {CH e {iB} (i) {Anb}a{iB} {AN—b}e{lB}
{A}ta ;e {IB} {A} if b then ¢ else ¢ {{| B}
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{3i.i > 0A A(i)}while b do c {| A(0)}
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(cons)

where j € LVar.
A total correctness property is provable (notation: - {A} ¢ {{ B}) if it is derivable
by the Hoare rules. In case of (while), A(f) is called a (loop) invariant.

v
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© Equivalence of Axiomatic and Operational/Denotational Semantics
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Operational and Denotational Equivalence

Definition 4.1: O[.] : Cmd — (X --» X) given by

Olc](o) =0’ < (c,0) = o’

Definition 4.2: Two statements c1, c; € Cmd are operationally equivalent
(notation: ¢; ~ ) if

Ofa] = Ofe].

Theorem 8.2: For every c € Cmd,

Ole] = €[el,

e, O[] = e[].
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Axiomatic Equivalence |

In the axiomatic semantics, two statements have to be considered
equivalent if they are indistinguishable w.r.t. partial correctness properties:

Definition 13.1 (Axiomatic equivalence)

Two statements c1, co € Cmd are called axiomatically equivalent
(notation: ¢; & ¢) if, for all assertions A, B € Assn,

F{Ata{B} << F{Ala{B}.
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Axiomatic Equivalence Il
Example 13.2

We show that
while b do ¢ &~ if b then (c;while b do c) else skip
(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}
<= F {A}while bdo c{B} (Theorem 11.2, 11.5)
<= ex. C € Assn such that = (A= C),=(CA—-b= B),
F {C}while bdo c{C A=b} (rule (cons))
<= ex. C € Assn such that = (A= C),=(CA-b= B),
F{CAb}c{C} (rule (while))
<= ex. C € Assn such that = (A= C),=(CA—-b= B),
F{C A b} c;while bdo c{C A—b} (rule (seq)),
F{C A=b}skip{C A =b} (rule (skip))
ex. C € Assn such that = (A= C),=(CA-b= B),
F{C} if b then (c;while b do c) else skip {C A =b} (rule (if))
F {A}if b then (c;while b do c) else skip{B} (rule (cons))
E {A}if b then (c;while b do c) else skip{B}
(Theorem 11.2, 11.5)

111
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Axiomatic Equivalence IlI

The following result shows that considering total rather than partial
correctness properties yields the same notion of equivalence:

Let c1,co € Cmd. The following propositions are equivalent:
Q@ VA BecAssn: E{Ala{B} <— ={A} o {B}
@ VA BecAssn: E{Ala{lB} <= E{Ala{IB}

omitted
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Axiomatic vs. Denotational /Operational Equiv. |

Theorem 13.4
Axiomatic and denotational /operational equivalence coincide, i.e., for all
C1,C € Cmd,

Cl1 " C < (C ~ C.

The proof is based of the following encoding of states by assertions:

Definition 13.5

Given a finite subset of program variables X C Var and a state o € ¥, the
characteristic assertion of o w.r.t. X is given by

State(o, X) /\ (x = ) € Assn
xeX

Moreover, we let State(L, X) := false.

v
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Axiomatic vs. Denotational /Operational Equiv. Il

Programs and characteristic state assertions are obviously related in the
following way:

Corollary 13.6

Let c € Cmd, and let FV/(c) C Var denote the set of all variables
occurring in c. Then, for every finite X O FV/(c) and o € ¥,
{State(o, X)} c {State(€[c]o, X)}

Example 13.7 (Factorial program)

For ¢ := (y:=1; while —(x=1) do (y:=y*x; x:=x-1)), X = {x,y},
o(x) = 3, and o(y) = 0, we obtain

State(o, X)
State(C[c]e, X)

Proof (Theorem 13.4).

on the board

Ol
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© Summary: Axiomatic Semantics
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Summary: Axiomatic Semantics

Formalized by partial /total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational /denotational semantics

@ Software engineering aspect: integrated development of program and
proof (cf. assertions in Java)
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