Semantics and Verification of Software

Lecture 15: Extension by Blocks and Procedures Il
(Denotational Semantics)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-i2.informatik.rwth-aachen.de/i2/svswil/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

GFRAUC"FQ INFORMATIK IRWTHAACHEN

UNIVERSITY

Online Registration for
Seminars and Practical Courses (Praktika)
in Summer Term 2012

Who?
Students of: = Master Courses
= Bachelor Informatik (PraSeminar!)

Where?
web-info8.informatik.rwth-aachen.de/apse

When?
11.01.2012 - 23.01.2012

@ Repetition: Operational Semantics of Blocks and Procedures

“w.rH Semantics and Verification of Software Winter Semester 2011/12

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={P,Q,...} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p == proc P is c;p|e € PDec

v o= var x;v | e € VDec

c=skip|x :=a|c;c | if b then ¢ else ¢ | while b do ¢ |
call P |begin v p ¢ end € Cmd

“er Semantics and Verification of Software Winter Semester 2011/12

Operational Semantics |

@ So far: states ¥ = {o | o : Var — Z}
@ Now: explicit control over all (nested) instances of a variable:

e variable environments VEnv := {p | p: Var --» Loc}
o locations Loc :=N
o stores Sto:={o | o : Loc --» Z}

(partial function to maintain allocation information)

= Two-level access to a variable x € Var:
@ determine current memory location of x:

I:= p(x)

@ reading/writing access to o at position /

@ Thus: previous state information represented as o o p

“er Semantics and Verification of Software Winter Semester 2011/12

Operational Semantics |l

o Effect of procedure call determined by its body and variable and
procedure environment of its declaration:

PEnv := {r | m: PVar --» Cmd x VEnv x PEnv}

denotes the set of procedure environments

e Effect of declaration: update of environment (and store)

upd,[.] : VDec x VEnv x Sto — VEnv x Sto
upd, [var x;v](p, o) := upd,[v](p[x — k], o[k — 0])
upd, [€](p, 0) := (p, o)
upd,[.] : PDec x VEnv x PEnv — PEnv
updy[proc P is c;p](p,) := upd,[pl(p, [P — (¢, p, m)])
upd,[e](p,7) =7

where [, := min{/ € Loc | o(l) = L}

“er Semantics and Verification of Software Winter Semester 2011/12 15.6

Execution Relation |

Definition (Execution relation)

For c € Cmd, 0,0’ € Sto, p € VEnv, and 7 € PEnv, the execution
relation (p,) F (c,0) — ¢’ (“in environment (p,), statement ¢
transforms store o into ¢’") is defined by the following rules:

(skip)

(p,m) F (skip,0) = o
(a,c0p) = z
p,m)F (x :=a,0) = o[p(x) — 2]

(@sen) ¢

(p,m)F{c,0) =" (p,7)F{c2,0') = "
(p,m)F{c;c,0) = "

(seq)

(i) (b,oop) —true (p,7)kF (c1,0) = o
-t
I (p,m) F (if b then c; else ¢p,0) — o’
e (b,oop) —false (p,7)F (c2,0) = 0’
if

(p,7) F (if b then ¢ else ¢,0) — o’

v

Rer Semantics and Verification of Software Winter Semester 2011/12 15.7

Execution Relation |l

Definition (Execution relation; continued)

(b,o o p) — false

h-f
(w)(p,ﬂ) + (while b do c,0) — o

1

(b,o 0 p)—true (p,7)F (c,0) =0’ (p,7)F (while b do c,0’)—=0c

h-
(wh-t) (p,7) F (while b do c,0) = o”

(o, 7' [P+ (c,p,)] F (c,0) = o
(p,7) F (call P,o) — o’

(call) if 7(P) = (c, o,)

"

upd, [vl(p, o) = (¢, 0") (¢, upd,lpl(p', 7)) F (c,0') = o
(p,m) F (begin v p c end, o) — o”

(block)

RWTH Semantics and Verification of Software Winter Semester 2011/12 15.8

© Denotational Semantics of Blocks and Procedures

“er Semantics and Verification of Software Winter Semester 2011/12

Variable Environments

Exactly as in operational semantics:

o Variable environments keep location information:
VEnv :={p| p: Var --» Loc}

with Loc := N

o Effect of variable declaration: update of environment and store

upd, [.] : VDec x VEnv x Sto — VEnv x Sto
upd, [var x;v](p, o) := upd,[v](p[x — k], o[k — 0])
upd, [€](p, o) := (p,0)

where [:= min{/ € Loc | o(l) = L}

“er Semantics and Verification of Software Winter Semester 2011/12 15.10

Statement Semantics Using Locations

o First step: reformulation of Definition 5.3 using locations
e So far: €[] : Cmd — (X --» X)

Definition 15.1 (Denotational semantics using locations)

The (denotational) semantic functional for statements,
¢'[.] : Cmd — VEnv — (Sto --» Sto),

is given by:
¢'[skip]p := idsto
C[x := a]p o := a[p(x) — A[a](lookup p o)]
Cla;e]p = (Clelp) o (Calp)

¢’[if b then ¢ else]p := cond(B[b] o (lookup p), € [c1]p, € [c2]p)
¢’[while b do c]p := fix(P)

where lookup : VEnv — Sto — ¥ with lookup p 0 := g o p and
o : (Sto --» Sto) — (Sto --» Sto) :
f +— cond(B[b] o (lookup p), f o & [c]p, idsto)

RWTH Semantics and Verification of Software Winter Semester 2011/12 15.11

Procedure Environments

@ Procedure environments now store semantic information:

e So far: PEnv :={n | m: PVar --» Cmd x VEnv x PEnv}
o Now: PEnv := {7 |m: PVar --» (Sto --» Sto)}

@ Procedure declarations (“proc P is ¢”) update procedure
environment:

upd,[.] : PDec x VEnv x PEnv — PEnv

e non-recursive case: P not (indirectly) called within ¢
= 7(P) immediately given by ¢"[c]p 7
upd,[proc P is c¢;p](p,7) := upd,[p](p, 7[P > €"[c]p 7])

e recursive case: 7(P) must be a solution of equation P = &"[c]p =
(cf. fixpoint semantics of while loop — Slide 5.15)

updp[[proc P is c;p|(p,7) = updp[[pﬂ(p,w[P — fix(P)])

where ¢ : (Sto --» Sto) — (Sto --» Sto) : f — & [c]p 7[P — f]
o upd,[e](p,7) =7

“er Semantics and Verification of Software Winter Semester 2011/12 15.12

Statement Semantics Including Procedures

So far: ¢'[.] : Cmd — VEnv — (Sto --+ Sto)

Definition 15.2 (Denotational semantics with procedures)

¢’[.] : Cmd — VEnv — PEnv — (Sto --» Sto)
is given by:

¢’ [skip]p 7 := idsto
x := a]p 7o = o[p(x) — Aa](lookup p o)]
laselom = (€alp 1) o (€[cilo)
¢’[if b then ¢ else ¢]p ™ := cond(B[b] o (lookup p),
Q:”[[Cl]]p T, Q:”[[Cg]]p ﬂ')
fix(®)
w(P)
¢"[c]p = o

¢’[while b do c]p 7 :
[call Plp :
¢’[begin v p c end]pmo :

a’)

where upd, [v](p, o)
upd,[p] (',)
Iookuppa

o(f) :

(',
7T
o o
Cco

nd(‘B[[b]] (lookup p), f o @'[c]p 7, idsto)

“w.rH Semantics and Verification of Software Winter Semester 2011/12 15.13

Example: Non-Recursive Case

Example 15.3 (Non-recursive procedure call)

(also demonstrates static scoping principle)

¢ = begin

var Xx;

proc P is x := 1;

X = 2; }Cl

begin
var x;
x :=3;)0
call P;

end;

end

o Initial environments/store: py € VEnv, my € PEnv, oy € Sto
e Computation of ¢"[[c]py my oy: on the board

Semantics and Verification of Software

Winter Semester 2011/12

Example: Recursive Case

Example 15.4 (Recursive procedure call)

¢ = begin
proc F is

if x = 1 then
skip;

else p
yi=xxy; [
X :=x - 1;
call F;

y :=1;
call F;} =

end

o Initial environments/store: p1 := py[x — 0,y — 1] € VEnv,
mp € PEnv, o € Sto (with o(0) # 1)

o Computation of €”[c]p1 7y o: on the board

Semantics and Verification of Software Winter Semester 2011/12

© Summary: Blocks and Procedures

“er Semantics and Verification of Software Winter Semester 2011/12 15.16

Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures
@ Requires concept of locations to support instantiation of variables
@ Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
@ Meaning of variable declaration: storage allocation
@ Meaning of procedure call:
e operationally: execution of procedure body
= procedure environment records statement (“symbol table”)
e denotationally: application of procedure meaning
= procedure environment records (partial) store transformation
o Recursive behavior again handled by fixpoint approach
o Further extensions:
e axiomatic semantics (for proc P is c)
{A} c{B}
{A} call P{B}
{A}call P{B} F {A}c{B}
{A} call P{B}

e non-recursive: (call)

o recursive: (call)

e procedure parameters
e higher-order procedures

“er Semantics and Verification of Software Winter Semester 2011/12

	Repetition: Operational Semantics of Blocks and Procedures
	Denotational Semantics of Blocks and Procedures
	Summary: Blocks and Procedures

