Semantics and Verification of Software

Lecture 16: Provably Correct Implementation |
(Abstract Machine & Compiler)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-i2.informatik.rwth-aachen.de/i2/svswil/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Informatik-Kolloquium RWNTH

Rheinisch-Westfalische Technische Hochschule Aachen
Lehrstuhl fir Informatik 2

EINLADUNG

Zeit: Mittwoch, 25. Januar 2012, 15:00 Uhr
Ort: Hoérsaal AH 3, Ahornstr. 55
Referent: Dr. Thomas Noll

RWTH Aachen

Thema: Correctness, Safety and Fault Tolerance in
Aerospace Systems: The ESA COMPASS
Project

Building modern aerospace systems is highly demanding. They
should be extremely dependable, offering service without failures
for a very long time - typically years or decades. The need for an

d systs oftware co- i ing framework to support
the design of such systems is therefore pressing. However, cur-
rent tools and formalisms tend to be tailored to specific analysis
techniques and do not sufficiently cover the full spectrum of re-
quired system aspects such as safety, dependability and performa-
bility. Additionally, they cannot properly handle the intertwining
of hardware and software operation. As such, current engineering
practice lacks integration and coherence.

This talk gives an overview of the COMPASS project that was ini-
tiated by the European Space Agency to overcome this problem. It
supports system-software co-engineering of real-time embedded
systems by following a coherent and multidisciplinary approach.
We show how such systems and their possible failures can be mod-
eled in the Architecture and Analysis Design Language, how their
behavior can be formalized, and how to analyze them by means of
model checking and related techniques.

Es laden ein: Die Dozenten der Informatik

Wanted: HiWis

To support Compiler Construction in Summer Semester
Tasks:

e evaluation of exercises
e organizational support

12 hrs/week contract

Previous CC lecture not a prerequisite (but of course helpful)

“er Semantics and Verification of Software Winter Semester 2011/12

© Repetition: Semantics of Blocks and Procedures

“er Semantics and Verification of Software Winter Semester 2011/12

Procedure Environments

@ Procedure environments now store semantic information:

e So far: PEnv :={n | m: PVar --» Cmd x VEnv x PEnv}
o Now: PEnv := {7 |m: PVar --» (Sto --» Sto)}

@ Procedure declarations (“proc P is ¢”) update procedure
environment:

upd,[.] : PDec x VEnv x PEnv — PEnv

e non-recursive case: P not (indirectly) called within ¢
= 7(P) immediately given by ¢"[c]p 7
upd,[proc P is ¢;p](p,7) := upd,[p](p, 7[P ~— €"[c]p 7])

e recursive case: 7(P) must be a solution of equation P = &”[c]p =
(cf. fixpoint semantics of while loop — Slide 5.15)

updp[[proc P is c;p|(p,7) = updp[[pﬂ(p,w[P — fix(P)])

where ¢ : (Sto --» Sto) — (Sto --» Sto) : f — & [c]p 7[P — f]
o upd,[e](p,7) =7

“er Semantics and Verification of Software Winter Semester 2011/12

Statement Semantics Including Procedures

So far: ¢'[.] : Cmd — VEnv — (Sto --+ Sto)

Definition (Denotational semantics with procedures)

¢’[.] : Cmd — VEnv — PEnv — (Sto --» Sto)
is given by:

¢’ [skip]p 7 := idsto
x := a]p 7o = o[p(x) — Aa](lookup p o)]
laselom = (€alp 1) o (€[cilo)
¢’[if b then ¢ else ¢]p ™ := cond(B[b] o (lookup p),
Q:”[[Cl]]p T, Q:”[[Cg]]p ﬂ')
fix(®)
w(P)
¢"[c]p = o

¢’[while b do c]p 7 :
[call Plp :
¢’[begin v p c end]pmo :

where upd, [v](p,0) = (o', 0")
upd,[p](p’,) = =’
Iookup pO =00
®(f) :=co nd(%[[b]] (lookup p), f o € [c]p 7, idsto)

“w.rH Semantics and Verification of Software Winter Semester 2011/12 16.6

Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures

“er Semantics and Verification of Software Winter Semester 2011/12

Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures
@ Requires concept of locations to support instantiation of variables

“er Semantics and Verification of Software Winter Semester 2011/12

Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures

@ Requires concept of locations to support instantiation of variables

@ Static scoping: meaning of identifier determined by declaration
context (rather than calling context)

“er Semantics and Verification of Software Winter Semester 2011/12

Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)

Meaning of variable declaration: storage allocation

“er Semantics and Verification of Software Winter Semester 2011/12

Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation
Meaning of procedure call:
e operationally: execution of procedure body
= procedure environment records statement (“symbol table”)
e denotationally: application of procedure meaning
= procedure environment records (partial) store transformation
o Recursive behavior again handled by fixpoint approach

“er Semantics and Verification of Software Winter Semester 2011/12 16.7

Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures
@ Requires concept of locations to support instantiation of variables
@ Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
@ Meaning of variable declaration: storage allocation
@ Meaning of procedure call:
e operationally: execution of procedure body
= procedure environment records statement (“symbol table”)
e denotationally: application of procedure meaning
= procedure environment records (partial) store transformation
o Recursive behavior again handled by fixpoint approach
o Further extensions:
e axiomatic semantics (for proc P is c)
{A} c{B}
{A} call P{B}
{A}call P{B} F {A}c{B}
{A} call P{B}

e non-recursive: (call)

o recursive: (call)

e procedure parameters
e higher-order procedures

“er Semantics and Verification of Software Winter Semester 2011/12 16.7

© Introduction

“er ics and Verification of Software Winter Semester 2011/12

Compiler Correctness

. compiler .
programming language ~—— machine code

semantics |, 1 (simple) semantics
?

meaning = meaning

“er Semantics and Verification of Software Winter Semester 2011/12

Compiler Correctness

. compiler .
programming language ~—— machine code
semantics |, 1 (simple) semantics
?

meaning = meaning

To do:
@ Definition of abstract machine
@ Definition (operational) semantics of machine instructions
@ Definition of translation WHILE — machine code (“compiler”)

@ Proof: semantics of generated machine code = semantics of original
source code

“er Semantics and Verification of Software Winter Semester 2011/12

© The Abstract Machine

“er Semantics and Verification of Software Winter Semester 2011/12 16.10

The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by
e configurations of the form (d, e, o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.11

The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by
e configurations of the form (d, e, o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)

e initial configurations of the form (d, ¢, o)

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.11

The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by
e configurations of the form (d, e, o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)
e initial configurations of the form (d, ¢, o)

e final configurations of the form (e, e, o)

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.11

The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by

e configurations of the form (d, e, o) € Cnf where
o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)
e initial configurations of the form (d, ¢, o)
e final configurations of the form (e, e, o)

@ code sequences d and instructions i:
duo=¢eli:d
i ::= PUSH(z) | ADD | MULT | SUB |
TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)
(where z € Z and x € Var)

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.11

Semantics of AM-Code

Definition 16.2 (Transition relation of AM)

The transition relation > C Cnf x Cnf is given by
<PUSH(z) d e, a) > (d,z:e,0)
<ADD d P4 > > <d, (Z]_ +22) >
(MULT : d,zl :22 ,o) > (d,(z1 % z2) : e, a>
(SUB:d,z1 : 2 :e,0) > (d,(zn1 —) : e,a}
(TRUE d,e O’> > (d,true: e, o)
<FALSE d e 0’> > (d,false : e, o)
<EQ d,z; : > > <d, (21 = 22) e,a)
(GT:d,zl:zz ,o) > (d,(z1 > z) : e,0)
(AND : d, ty : t2 ,o) > (d, (L A) : e,0)
<OR d,ty : > > <d,(t1 V tz) >
(NEG d, t e O’> > (d,—t:e o)
(LOAD(x) : d,e,0) > (d,o(x) : e,0)
(STORE(x) : d,z:e,0) > (d,e, o[x — z])
(NOOP : d,e,0) > (d, e, 0)
(BRANCH (dirye , draise) = d, t:e,0) > (d; : d, e, 0)
<LDOP(d1,d2) d,e, O’> > <d BRANCH(C/Q L00P(d;,d>) ,NOOP) :d, e, O’>

v

“w.rH Semantics and Verification of Software Winter Semester 2011/12 16.12

Alternative Choices

Remark: more traditional machine architectures
@ Variables referenced by address (and not by name)

e configurations (d, e, m) with memory m € Z*
e LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)

“er Semantics and Verification of Software Winter Semester 2011/12 16.13

Alternative Choices

Remark: more traditional machine architectures

@ Variables referenced by address (and not by name)
e configurations (d, e, m) with memory m € Z*
e LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)

@ BRANCH and LOOP instruction replaced by code addresses (labels) and

jumping instructions
e configurations (pc, d, e, m) with program counter pc € N
e BRANCH and LOOP implemented by control flow, using JUMP (/) and
JUMPFALSE (/) (/ € N)

“er Semantics and Verification of Software Winter Semester 2011/12 16.13

Alternative Choices

Remark: more traditional machine architectures
@ Variables referenced by address (and not by name)
e configurations (d, e, m) with memory m € Z*
e LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)
@ BRANCH and LOOP instruction replaced by code addresses (labels) and
jumping instructions
e configurations (pc, d, e, m) with program counter pc € N
e BRANCH and LOOP implemented by control flow, using JUMP (/) and
JUMPFALSE (/) (/ € N)
@ Registers for storing intermediate values
(in place of evaluation stack e)

“er Semantics and Verification of Software Winter Semester 2011/12 16.13

Terminating and Looping Computations

Definition 16.3 (AM computations)

@ A finite computation is a finite configuration sequence of the form
0,71, - - -,k Where k € N and ~y;_1 >y, for each i € {1,... k}

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.14

Terminating and Looping Computations

Definition 16.3 (AM computations)

@ A finite computation is a finite configuration sequence of the form
0,71, - - -,k Where k € N and ~y;_1 >y, for each i € {1,... k}

o If, in addition, there is no ~ such that v, > v, then v9,71, ...,k is
called terminating

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.14

Terminating and Looping Computations

Definition 16.3 (AM computations)

@ A finite computation is a finite configuration sequence of the form
0,71, - - -,k Where k € N and ~y;_1 >y, for each i € {1,... k}

o If, in addition, there is no ~ such that v, > v, then v9,71, ...,k is
called terminating

@ A looping computation is an infinite configuration sequence of the
form 0,71, 72, . .. where ; > 11 for each i € N

RWTH Semantics and Verification of Software Winter Semester 2011/12

16.14

Terminating and Looping Computations

Definition 16.3 (AM computations)

@ A finite computation is a finite configuration sequence of the form
0,71, - - -,k Where k € N and ~y;_1 >y, for each i € {1,... k}

o If, in addition, there is no ~ such that v, > v, then v9,71, ...,k is
called terminating

@ A looping computation is an infinite configuration sequence of the
form 0,71, 72, . .. where ; > 11 for each i € N

Note: a terminating computation may end in a final configuration
((e,e,0)) or in a stuck configuration (e.g., (ADD, 1, 0))

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.14

A Terminating Computation

Example 16.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) : LOAD(x) : ADD: STORE(x) , £, o)

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.15

A Terminating Computation

Example 16.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) : LOAD(x) : ADD: STORE(x) , £, o)
> (LOAD(x) :ADD:STORE(x),1,0)

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.15

A Terminating Computation

Example 16.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) : LOAD(x) : ADD: STORE(x) , £, o)
> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.15

A Terminating Computation

Example 16.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) :LOAD(x) : ADD: STORE(x), ¢, 0)
>> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)
> (STORE(x),4,0)

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.15

A Terminating Computation

Example 16.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) :LOAD(x) : ADD: STORE(x), ¢, 0)
>> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)
> (STORE(x),4,0)
> (g,e,0[x— 4])

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.15

A Terminating Computation

Example 16.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) :LOAD(x) : ADD: STORE(x), ¢, 0)
>> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)
> (STORE(x),4,0)
> (g,e,0[x— 4])

Remark: implements statement x := x + 1

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.15

A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.16

A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
> (TRUE:BRANCH (NOOP: LOOP (TRUE,NOOP) ,NOOP), £, o)

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.16

A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
> (TRUE:BRANCH (NOOP: LOOP (TRUE,NOOP) ,NOOP), £, o)
> (BRANCH(NOOP :LOOP (TRUE,NOOP) ,NOOP), true, o)

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.16

A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
> (TRUE:BRANCH (NOOP: LOOP (TRUE,NOOP) ,NOOP), £, o)
> (BRANCH(NOOP :LOOP (TRUE,NOOP) ,NOOP), true, o)
> (NOOP:LOOP(TRUE,NOOP), ¢, o)

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.16

A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
> (TRUE:BRANCH (NOOP: LOOP (TRUE,NOOP) ,NOOP), £, o)
> (BRANCH(NOOP: LOOP (TRUE,NOOP) ,NOOP), true, o)
> (NOOP:LOOP (TRUE,NOOP), ¢, o)
> (LOOP(TRUE,NOOP), ¢, o)

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.16

A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
> (TRUE:BRANCH (NOOP: LOOP (TRUE,NOOP) ,NOOP), £, o)
> (BRANCH(NOOP: LOOP (TRUE,NOOP) ,NOOP), true, o)
> (NOOP:LOOP (TRUE,NOOP), ¢, o)
> (LOOP(TRUE,NOOP), ¢, o)
> .

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.16

A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
> (TRUE:BRANCH (NOOP: LOOP (TRUE,NOOP) ,NOOP), £, o)
> (BRANCH(NOOP: LOOP (TRUE,NOOP) ,NOOP), true, o)
> (NOOP:LOOP (TRUE,NOOP), ¢, o)
> (LOOP(TRUE,NOOP), ¢, o)
> .

Remark: implements statement while true do skip

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.16

@ Properties of AM

“er Semantics and Verification of Software Winter Semester 2011/12 16.17

A New Inductive Principle

Application: Finite computations (Def. 16.3)

Definition: a finite computation g, 71, - .., vk has length k
Induction base: property holds for all computations of length 0
Induction hypothesis: property holds for all computations of length < k
Induction step: property holds for all computations of length k + 1

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.18

Application: Extension of Code and Stack

Lemma 16.6
If (dh,e1,0)>*(d',€,0'), then

(dl cdb, e 62,0'> >* <d, : d27e, : 3270J>

for every d> € Code and e, € Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.19

Application: Extension of Code and Stack

Lemma 16.6
If (dh,e1,0)>*(d',€,0'), then

(di: da,e1:e,0)>" (d': dy, e i e,0")

for every d> € Code and e, € Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

by induction on the length of the computation
(on the board) O

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.19

	Repetition: Semantics of Blocks and Procedures
	Introduction
	The Abstract Machine
	Properties of AM

