
Semantics and Verification of Software
Lecture 16: Provably Correct Implementation I

(Abstract Machine & Compiler)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/


Informatik-Kolloquium
Rheinisch-Westfälische Technische Hochschule Aachen

Lehrstuhl für Informatik 2

E I N L A D U N G

Zeit: Mittwoch, 25. Januar 2012, 15:00 Uhr

Ort: Hörsaal AH 3, Ahornstr. 55

Referent: Dr. Thomas Noll
RWTH Aachen

Thema: Correctness, Safety and Fault Tolerance in
Aerospace Systems: The ESA COMPASS
Project

Building modern aerospace systems is highly demanding. They
should be extremely dependable, offering service without failures
for a very long time – typically years or decades. The need for an
integrated system-software co-engineering framework to support
the design of such systems is therefore pressing. However, cur-
rent tools and formalisms tend to be tailored to specific analysis
techniques and do not sufficiently cover the full spectrum of re-
quired system aspects such as safety, dependability and performa-
bility. Additionally, they cannot properly handle the intertwining
of hardware and software operation. As such, current engineering
practice lacks integration and coherence.

This talk gives an overview of the COMPASS project that was ini-
tiated by the European Space Agency to overcome this problem. It
supports system-software co-engineering of real-time embedded
systems by following a coherent and multidisciplinary approach.
We show how such systems and their possible failures can be mod-
eled in the Architecture and Analysis Design Language, how their
behavior can be formalized, and how to analyze them by means of
model checking and related techniques.

Es laden ein: Die Dozenten der Informatik



Wanted: HiWis

To support Compiler Construction in Summer Semester

Tasks:

evaluation of exercises
organizational support

12 hrs/week contract

Previous CC lecture not a prerequisite (but of course helpful)

Semantics and Verification of Software Winter Semester 2011/12 16.3



Outline

1 Repetition: Semantics of Blocks and Procedures

2 Introduction

3 The Abstract Machine

4 Properties of AM

Semantics and Verification of Software Winter Semester 2011/12 16.4



Procedure Environments

Procedure environments now store semantic information:
So far: PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}
Now: PEnv := {π | π : PVar 99K (Sto 99K Sto)}

Procedure declarations (“proc P is c”) update procedure
environment:

updpJ.K : PDec × VEnv × PEnv → PEnv

non-recursive case: P not (indirectly) called within c
⇒ π(P) immediately given by C′′JcKρ π

updpJproc P is c;pK(ρ, π) := updpJpK(ρ, π[P 7→ C′′JcKρ π])

recursive case: π(P) must be a solution of equation P = C′′JcKρ π
(cf. fixpoint semantics of while loop – Slide 5.15)

updpJproc P is c;pK(ρ, π) := updpJpK(ρ, π[P 7→ fix(Φ)])

where Φ : (Sto 99K Sto)→ (Sto 99K Sto) : f 7→ C′′JcKρ π[P 7→ f ]
updpJεK(ρ, π) := π

Semantics and Verification of Software Winter Semester 2011/12 16.5



Statement Semantics Including Procedures

So far: C′J.K : Cmd → VEnv → (Sto 99K Sto)

Definition (Denotational semantics with procedures)

C′′J.K : Cmd → VEnv → PEnv → (Sto 99K Sto)
is given by:

C′′JskipKρ π := idSto

C′′Jx := aKρ π σ := σ[ρ(x) 7→ AJaK(lookup ρ σ)]
C′′Jc1;c2Kρ π := (C′′Jc2Kρ π) ◦ (C′′Jc1Kρ π)

C′′Jif b then c1 else c2Kρ π := cond(BJbK ◦ (lookup ρ),
C′′Jc1Kρ π,C′′Jc2Kρ π)

C′′Jwhile b do cKρ π := fix(Φ)
C′′Jcall PKρ π := π(P)

C′′Jbegin v p c endKρ π σ := C′′JcKρ′ π′ σ′

where updv JvK(ρ, σ) = (ρ′, σ′)
updpJpK(ρ′, π) = π′

lookup ρ σ := σ ◦ ρ
Φ(f ) := cond(BJbK ◦ (lookup ρ), f ◦ C′′JcKρ π, idSto)

Semantics and Verification of Software Winter Semester 2011/12 16.6



Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures

Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation
Meaning of procedure call:

operationally: execution of procedure body
⇒ procedure environment records statement (“symbol table”)

denotationally: application of procedure meaning
⇒ procedure environment records (partial) store transformation

Recursive behavior again handled by fixpoint approach
Further extensions:

axiomatic semantics (for proc P is c)

non-recursive: (call)
{A} c {B}

{A} call P {B}

recursive: (call)
{A} call P {B} ` {A} c {B}

{A} call P {B}
procedure parameters
higher-order procedures

Semantics and Verification of Software Winter Semester 2011/12 16.7



Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables

Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation
Meaning of procedure call:

operationally: execution of procedure body
⇒ procedure environment records statement (“symbol table”)

denotationally: application of procedure meaning
⇒ procedure environment records (partial) store transformation

Recursive behavior again handled by fixpoint approach
Further extensions:

axiomatic semantics (for proc P is c)

non-recursive: (call)
{A} c {B}

{A} call P {B}

recursive: (call)
{A} call P {B} ` {A} c {B}

{A} call P {B}
procedure parameters
higher-order procedures

Semantics and Verification of Software Winter Semester 2011/12 16.7



Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)

Meaning of variable declaration: storage allocation
Meaning of procedure call:

operationally: execution of procedure body
⇒ procedure environment records statement (“symbol table”)

denotationally: application of procedure meaning
⇒ procedure environment records (partial) store transformation

Recursive behavior again handled by fixpoint approach
Further extensions:

axiomatic semantics (for proc P is c)

non-recursive: (call)
{A} c {B}

{A} call P {B}

recursive: (call)
{A} call P {B} ` {A} c {B}

{A} call P {B}
procedure parameters
higher-order procedures

Semantics and Verification of Software Winter Semester 2011/12 16.7



Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation

Meaning of procedure call:
operationally: execution of procedure body

⇒ procedure environment records statement (“symbol table”)
denotationally: application of procedure meaning

⇒ procedure environment records (partial) store transformation
Recursive behavior again handled by fixpoint approach

Further extensions:
axiomatic semantics (for proc P is c)

non-recursive: (call)
{A} c {B}

{A} call P {B}

recursive: (call)
{A} call P {B} ` {A} c {B}

{A} call P {B}
procedure parameters
higher-order procedures

Semantics and Verification of Software Winter Semester 2011/12 16.7



Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation
Meaning of procedure call:

operationally: execution of procedure body
⇒ procedure environment records statement (“symbol table”)

denotationally: application of procedure meaning
⇒ procedure environment records (partial) store transformation

Recursive behavior again handled by fixpoint approach

Further extensions:
axiomatic semantics (for proc P is c)

non-recursive: (call)
{A} c {B}

{A} call P {B}

recursive: (call)
{A} call P {B} ` {A} c {B}

{A} call P {B}
procedure parameters
higher-order procedures

Semantics and Verification of Software Winter Semester 2011/12 16.7



Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation
Meaning of procedure call:

operationally: execution of procedure body
⇒ procedure environment records statement (“symbol table”)

denotationally: application of procedure meaning
⇒ procedure environment records (partial) store transformation

Recursive behavior again handled by fixpoint approach
Further extensions:

axiomatic semantics (for proc P is c)

non-recursive: (call)
{A} c {B}

{A} call P {B}

recursive: (call)
{A} call P {B} ` {A} c {B}

{A} call P {B}
procedure parameters
higher-order procedures

Semantics and Verification of Software Winter Semester 2011/12 16.7



Outline

1 Repetition: Semantics of Blocks and Procedures

2 Introduction

3 The Abstract Machine

4 Properties of AM

Semantics and Verification of Software Winter Semester 2011/12 16.8



Compiler Correctness

programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:

1 Definition of abstract machine

2 Definition (operational) semantics of machine instructions

3 Definition of translation WHILE → machine code (“compiler”)

4 Proof: semantics of generated machine code = semantics of original
source code

Semantics and Verification of Software Winter Semester 2011/12 16.9



Compiler Correctness

programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:

1 Definition of abstract machine

2 Definition (operational) semantics of machine instructions

3 Definition of translation WHILE → machine code (“compiler”)

4 Proof: semantics of generated machine code = semantics of original
source code

Semantics and Verification of Software Winter Semester 2011/12 16.9



Outline

1 Repetition: Semantics of Blocks and Procedures

2 Introduction

3 The Abstract Machine

4 Properties of AM

Semantics and Verification of Software Winter Semester 2011/12 16.10



The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by

configurations of the form 〈d , e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top left)
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

initial configurations of the form 〈d , ε, σ〉
final configurations of the form 〈ε, e, σ〉
code sequences d and instructions i :

d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)

Semantics and Verification of Software Winter Semester 2011/12 16.11



The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by

configurations of the form 〈d , e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top left)
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

initial configurations of the form 〈d , ε, σ〉

final configurations of the form 〈ε, e, σ〉
code sequences d and instructions i :

d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)

Semantics and Verification of Software Winter Semester 2011/12 16.11



The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by

configurations of the form 〈d , e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top left)
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

initial configurations of the form 〈d , ε, σ〉
final configurations of the form 〈ε, e, σ〉

code sequences d and instructions i :
d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)

Semantics and Verification of Software Winter Semester 2011/12 16.11



The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by

configurations of the form 〈d , e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top left)
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

initial configurations of the form 〈d , ε, σ〉
final configurations of the form 〈ε, e, σ〉
code sequences d and instructions i :

d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)

Semantics and Verification of Software Winter Semester 2011/12 16.11



Semantics of AM-Code

Definition 16.2 (Transition relation of AM)

The transition relation B ⊆ Cnf × Cnf is given by

〈PUSH(z) : d , e, σ〉 B 〈d , z : e, σ〉
〈ADD : d , z1 : z2 : e, σ〉 B 〈d , (z1 + z2) : e, σ〉
〈MULT : d , z1 : z2 : e, σ〉 B 〈d , (z1 ∗ z2) : e, σ〉
〈SUB : d , z1 : z2 : e, σ〉 B 〈d , (z1 − z2) : e, σ〉

〈TRUE : d , e, σ〉 B 〈d , true : e, σ〉
〈FALSE : d , e, σ〉 B 〈d , false : e, σ〉

〈EQ : d , z1 : z2 : e, σ〉 B 〈d , (z1 = z2) : e, σ〉
〈GT : d , z1 : z2 : e, σ〉 B 〈d , (z1 > z2) : e, σ〉
〈AND : d , t1 : t2 : e, σ〉 B 〈d , (t1 ∧ t2) : e, σ〉
〈OR : d , t1 : t2 : e, σ〉 B 〈d , (t1 ∨ t2) : e, σ〉
〈NEG : d , t : e, σ〉 B 〈d ,¬t : e, σ〉
〈LOAD(x) : d , e, σ〉 B 〈d , σ(x) : e, σ〉

〈STORE(x) : d , z : e, σ〉 B 〈d , e, σ[x 7→ z ]〉
〈NOOP : d , e, σ〉 B 〈d , e, σ〉

〈BRANCH(dtrue,dfalse) : d , t : e, σ〉 B 〈dt : d , e, σ〉
〈LOOP(d1,d2) : d , e, σ〉 B 〈d1 :BRANCH(d2:LOOP(d1,d2),NOOP) :d , e, σ〉

Semantics and Verification of Software Winter Semester 2011/12 16.12



Alternative Choices

Remark: more traditional machine architectures

Variables referenced by address (and not by name)

configurations 〈d , e,m〉 with memory m ∈ Z∗
LOAD(x)/STORE(x) replaced by GET(n)/PUT(n) (where n ∈ N)

BRANCH and LOOP instruction replaced by code addresses (labels) and
jumping instructions

configurations 〈pc, d , e,m〉 with program counter pc ∈ N
BRANCH and LOOP implemented by control flow, using JUMP(l) and
JUMPFALSE(l) (l ∈ N)

Registers for storing intermediate values
(in place of evaluation stack e)

Semantics and Verification of Software Winter Semester 2011/12 16.13



Alternative Choices

Remark: more traditional machine architectures

Variables referenced by address (and not by name)

configurations 〈d , e,m〉 with memory m ∈ Z∗
LOAD(x)/STORE(x) replaced by GET(n)/PUT(n) (where n ∈ N)

BRANCH and LOOP instruction replaced by code addresses (labels) and
jumping instructions

configurations 〈pc, d , e,m〉 with program counter pc ∈ N
BRANCH and LOOP implemented by control flow, using JUMP(l) and
JUMPFALSE(l) (l ∈ N)

Registers for storing intermediate values
(in place of evaluation stack e)

Semantics and Verification of Software Winter Semester 2011/12 16.13



Alternative Choices

Remark: more traditional machine architectures

Variables referenced by address (and not by name)

configurations 〈d , e,m〉 with memory m ∈ Z∗
LOAD(x)/STORE(x) replaced by GET(n)/PUT(n) (where n ∈ N)

BRANCH and LOOP instruction replaced by code addresses (labels) and
jumping instructions

configurations 〈pc, d , e,m〉 with program counter pc ∈ N
BRANCH and LOOP implemented by control flow, using JUMP(l) and
JUMPFALSE(l) (l ∈ N)

Registers for storing intermediate values
(in place of evaluation stack e)

Semantics and Verification of Software Winter Semester 2011/12 16.13



Terminating and Looping Computations

Definition 16.3 (AM computations)

A finite computation is a finite configuration sequence of the form
γ0, γ1, . . . , γk where k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}

If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is
called terminating

A looping computation is an infinite configuration sequence of the
form γ0, γ1, γ2, . . . where γi B γi+1 for each i ∈ N

Note: a terminating computation may end in a final configuration
(〈ε, e, σ〉) or in a stuck configuration (e.g., 〈ADD, 1, σ〉)

Semantics and Verification of Software Winter Semester 2011/12 16.14



Terminating and Looping Computations

Definition 16.3 (AM computations)

A finite computation is a finite configuration sequence of the form
γ0, γ1, . . . , γk where k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}
If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is
called terminating

A looping computation is an infinite configuration sequence of the
form γ0, γ1, γ2, . . . where γi B γi+1 for each i ∈ N

Note: a terminating computation may end in a final configuration
(〈ε, e, σ〉) or in a stuck configuration (e.g., 〈ADD, 1, σ〉)

Semantics and Verification of Software Winter Semester 2011/12 16.14



Terminating and Looping Computations

Definition 16.3 (AM computations)

A finite computation is a finite configuration sequence of the form
γ0, γ1, . . . , γk where k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}
If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is
called terminating

A looping computation is an infinite configuration sequence of the
form γ0, γ1, γ2, . . . where γi B γi+1 for each i ∈ N

Note: a terminating computation may end in a final configuration
(〈ε, e, σ〉) or in a stuck configuration (e.g., 〈ADD, 1, σ〉)

Semantics and Verification of Software Winter Semester 2011/12 16.14



Terminating and Looping Computations

Definition 16.3 (AM computations)

A finite computation is a finite configuration sequence of the form
γ0, γ1, . . . , γk where k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}
If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is
called terminating

A looping computation is an infinite configuration sequence of the
form γ0, γ1, γ2, . . . where γi B γi+1 for each i ∈ N

Note: a terminating computation may end in a final configuration
(〈ε, e, σ〉) or in a stuck configuration (e.g., 〈ADD, 1, σ〉)

Semantics and Verification of Software Winter Semester 2011/12 16.14



A Terminating Computation

Example 16.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉

B 〈LOAD(x):ADD:STORE(x), 1, σ〉
B 〈ADD:STORE(x), 3 : 1, σ〉
B 〈STORE(x), 4, σ〉
B 〈ε, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

Semantics and Verification of Software Winter Semester 2011/12 16.15



A Terminating Computation

Example 16.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉
B 〈LOAD(x):ADD:STORE(x), 1, σ〉

B 〈ADD:STORE(x), 3 : 1, σ〉
B 〈STORE(x), 4, σ〉
B 〈ε, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

Semantics and Verification of Software Winter Semester 2011/12 16.15



A Terminating Computation

Example 16.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉
B 〈LOAD(x):ADD:STORE(x), 1, σ〉
B 〈ADD:STORE(x), 3 : 1, σ〉

B 〈STORE(x), 4, σ〉
B 〈ε, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

Semantics and Verification of Software Winter Semester 2011/12 16.15



A Terminating Computation

Example 16.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉
B 〈LOAD(x):ADD:STORE(x), 1, σ〉
B 〈ADD:STORE(x), 3 : 1, σ〉
B 〈STORE(x), 4, σ〉

B 〈ε, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

Semantics and Verification of Software Winter Semester 2011/12 16.15



A Terminating Computation

Example 16.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉
B 〈LOAD(x):ADD:STORE(x), 1, σ〉
B 〈ADD:STORE(x), 3 : 1, σ〉
B 〈STORE(x), 4, σ〉
B 〈ε, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

Semantics and Verification of Software Winter Semester 2011/12 16.15



A Terminating Computation

Example 16.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉
B 〈LOAD(x):ADD:STORE(x), 1, σ〉
B 〈ADD:STORE(x), 3 : 1, σ〉
B 〈STORE(x), 4, σ〉
B 〈ε, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

Semantics and Verification of Software Winter Semester 2011/12 16.15



A Looping Computation

Example 16.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉

B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Winter Semester 2011/12 16.16



A Looping Computation

Example 16.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉
B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉

B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Winter Semester 2011/12 16.16



A Looping Computation

Example 16.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉
B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉

B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Winter Semester 2011/12 16.16



A Looping Computation

Example 16.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉
B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉

B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Winter Semester 2011/12 16.16



A Looping Computation

Example 16.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉
B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉

B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Winter Semester 2011/12 16.16



A Looping Computation

Example 16.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉
B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Winter Semester 2011/12 16.16



A Looping Computation

Example 16.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉
B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Winter Semester 2011/12 16.16



Outline

1 Repetition: Semantics of Blocks and Procedures

2 Introduction

3 The Abstract Machine

4 Properties of AM

Semantics and Verification of Software Winter Semester 2011/12 16.17



A New Inductive Principle

Application: Finite computations (Def. 16.3)

Definition: a finite computation γ0, γ1, . . . , γk has length k

Induction base: property holds for all computations of length 0

Induction hypothesis: property holds for all computations of length ≤ k

Induction step: property holds for all computations of length k + 1

Semantics and Verification of Software Winter Semester 2011/12 16.18



Application: Extension of Code and Stack

Lemma 16.6

If 〈d1, e1, σ〉B∗ 〈d ′, e ′, σ′〉, then

〈d1 : d2, e1 : e2, σ〉B∗ 〈d ′ : d2, e
′ : e2, σ

′〉

for every d2 ∈ Code and e2 ∈ Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

Proof.

by induction on the length of the computation
(on the board)

Semantics and Verification of Software Winter Semester 2011/12 16.19



Application: Extension of Code and Stack

Lemma 16.6

If 〈d1, e1, σ〉B∗ 〈d ′, e ′, σ′〉, then

〈d1 : d2, e1 : e2, σ〉B∗ 〈d ′ : d2, e
′ : e2, σ

′〉

for every d2 ∈ Code and e2 ∈ Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

Proof.

by induction on the length of the computation
(on the board)

Semantics and Verification of Software Winter Semester 2011/12 16.19


	Repetition: Semantics of Blocks and Procedures
	Introduction
	The Abstract Machine
	Properties of AM

