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Building modern aerospace systems is highly demanding. They
should be extremely dependable, offering service without failures
for a very long time - typically years or decades. The need for an

d systs oftware co- i ing framework to support
the design of such systems is therefore pressing. However, cur-
rent tools and formalisms tend to be tailored to specific analysis
techniques and do not sufficiently cover the full spectrum of re-
quired system aspects such as safety, dependability and performa-
bility. Additionally, they cannot properly handle the intertwining
of hardware and software operation. As such, current engineering
practice lacks integration and coherence.

This talk gives an overview of the COMPASS project that was ini-
tiated by the European Space Agency to overcome this problem. It
supports system-software co-engineering of real-time embedded
systems by following a coherent and multidisciplinary approach.
We show how such systems and their possible failures can be mod-
eled in the Architecture and Analysis Design Language, how their
behavior can be formalized, and how to analyze them by means of
model checking and related techniques.

Es laden ein: Die Dozenten der Informatik



Wanted: HiWis

To support Compiler Construction in Summer Semester
Tasks:

e evaluation of exercises
e organizational support

12 hrs/week contract

Previous CC lecture not a prerequisite (but of course helpful)
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© Repetition: Semantics of Blocks and Procedures
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Procedure Environments

@ Procedure environments now store semantic information:

e So far: PEnv :={n | m: PVar --» Cmd x VEnv x PEnv}
o Now: PEnv := {7 |m: PVar --» (Sto --» Sto)}

@ Procedure declarations (“proc P is ¢”) update procedure
environment:

upd,[.] : PDec x VEnv x PEnv — PEnv

e non-recursive case: P not (indirectly) called within ¢
= 7(P) immediately given by ¢"[c]p 7
upd,[proc P is ¢;p](p,7) := upd,[p](p, 7[P ~— €"[c]p 7])

e recursive case: 7(P) must be a solution of equation P = &”[c]p =
(cf. fixpoint semantics of while loop — Slide 5.15)

updp[[proc P is c;p|(p,7) = updp[[pﬂ(p,w[P — fix(P)])

where ¢ : (Sto --» Sto) — (Sto --» Sto) : f — & [c]p 7[P — f]
o upd,[e](p,7) =7
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Statement Semantics Including Procedures

So far: ¢'[.] : Cmd — VEnv — (Sto --+ Sto)

Definition (Denotational semantics with procedures)

¢’[.] : Cmd — VEnv — PEnv — (Sto --» Sto)
is given by:

¢’ [skip]p 7 := idsto
x := a]p 7o = o[p(x) — Aa](lookup p o)]
laselom = (€alp 1) o (€[cilo )
¢’[if b then ¢ else ¢]p ™ := cond(B[b] o (lookup p),
Q:”[[Cl]]p T, Q:”[[Cg]]p ﬂ')
fix(®)
w(P)
¢"[c]p = o

¢’[while b do c]p 7 :
[call Plp :
¢’[begin v p c end]pmo :

where upd, [v](p,0) = (o', 0")
upd,[p](p’, ) = =’
Iookup pO =00
®(f) :=co nd(%[[b]] (lookup p), f o € [c]p 7, idsto)
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Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures
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Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures
@ Requires concept of locations to support instantiation of variables
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Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures

@ Requires concept of locations to support instantiation of variables

@ Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
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Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)

Meaning of variable declaration: storage allocation
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Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation
Meaning of procedure call:
e operationally: execution of procedure body
= procedure environment records statement (“symbol table”)
e denotationally: application of procedure meaning
= procedure environment records (partial) store transformation
o Recursive behavior again handled by fixpoint approach
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Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures
@ Requires concept of locations to support instantiation of variables
@ Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
@ Meaning of variable declaration: storage allocation
@ Meaning of procedure call:
e operationally: execution of procedure body
= procedure environment records statement (“symbol table”)
e denotationally: application of procedure meaning
= procedure environment records (partial) store transformation
o Recursive behavior again handled by fixpoint approach
o Further extensions:
e axiomatic semantics (for proc P is c)
{A} c{B}
{A} call P{B}
{A}call P{B} F {A}c{B}
{A} call P{B}

e non-recursive: (call)

o recursive: (call)

e procedure parameters
e higher-order procedures
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© Introduction
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Compiler Correctness

. compiler .
programming language ~——  machine code

semantics |, 1 (simple) semantics
?

meaning = meaning
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Compiler Correctness

. compiler .
programming language ~——  machine code
semantics |, 1 (simple) semantics
?

meaning = meaning

To do:
@ Definition of abstract machine
@ Definition (operational) semantics of machine instructions
@ Definition of translation WHILE — machine code (“compiler”)

@ Proof: semantics of generated machine code = semantics of original
source code
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© The Abstract Machine
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The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by
e configurations of the form (d, e, o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)

v
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The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by
e configurations of the form (d, e, o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)

e initial configurations of the form (d, ¢, o)

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.11



The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by
e configurations of the form (d, e, o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)
e initial configurations of the form (d, ¢, o)

e final configurations of the form (e, e, o)

v
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The Abstract Machine

Definition 16.1 (Abstract machine)

The abstract machine (AM) is given by

e configurations of the form (d, e, o) € Cnf where
o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)
e initial configurations of the form (d, ¢, o)
e final configurations of the form (e, e, o)

@ code sequences d and instructions i:
duo=¢eli:d
i ::= PUSH(z) | ADD | MULT | SUB |
TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)
(where z € Z and x € Var)

v
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Semantics of AM-Code

Definition 16.2 (Transition relation of AM)

The transition relation > C Cnf x Cnf is given by
<PUSH(z) d e, a) > (d,z:e,0)
<ADD d P4 > > <d, (Z]_ +22) >
(MULT : d,zl :22 ,o) > (d,(z1 % z2) : e, a>
(SUB:d,z1 : 2 :e,0) > (d,(zn1 — ) : e,a}
(TRUE d,e O’> > (d,true: e, o)
<FALSE d e 0’> > (d,false : e, o)
<EQ d,z; : > > <d, (21 = 22) e,a)
(GT:d,zl:zz ,o) > (d,(z1 > z) : e,0)
(AND : d, ty : t2 ,o) > (d, (L A ) : e,0)
<OR d,ty : > > <d,(t1 V tz) >
(NEG d, t e O’> > (d,—t:e o)
(LOAD(x) : d,e,0) > (d,o(x) : e,0)
(STORE(x) : d,z:e,0) > (d,e, o[x — z])
(NOOP : d,e,0) > (d, e, 0)
(BRANCH (dirye , draise) = d, t:e,0) > (d; : d, e, 0)
<LDOP(d1,d2) d,e, O’> > <d BRANCH(C/Q L00P(d;,d>) ,NOOP) :d, e, O’>

v
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Alternative Choices

Remark: more traditional machine architectures
@ Variables referenced by address (and not by name)

e configurations (d, e, m) with memory m € Z*
e LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)
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Alternative Choices

Remark: more traditional machine architectures

@ Variables referenced by address (and not by name)
e configurations (d, e, m) with memory m € Z*
e LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)

@ BRANCH and LOOP instruction replaced by code addresses (labels) and

jumping instructions
e configurations (pc, d, e, m) with program counter pc € N
e BRANCH and LOOP implemented by control flow, using JUMP (/) and
JUMPFALSE (/) (/ € N)
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Alternative Choices

Remark: more traditional machine architectures
@ Variables referenced by address (and not by name)
e configurations (d, e, m) with memory m € Z*
e LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)
@ BRANCH and LOOP instruction replaced by code addresses (labels) and
jumping instructions
e configurations (pc, d, e, m) with program counter pc € N
e BRANCH and LOOP implemented by control flow, using JUMP (/) and
JUMPFALSE (/) (/ € N)
@ Registers for storing intermediate values
(in place of evaluation stack e)
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Terminating and Looping Computations

Definition 16.3 (AM computations)

@ A finite computation is a finite configuration sequence of the form
0,71, - - -,k Where k € N and ~y;_1 >y, for each i € {1,... k}
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Terminating and Looping Computations

Definition 16.3 (AM computations)

@ A finite computation is a finite configuration sequence of the form
0,71, - - -,k Where k € N and ~y;_1 >y, for each i € {1,... k}

o If, in addition, there is no ~ such that v, > v, then v9,71, ...,k is
called terminating
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Terminating and Looping Computations

Definition 16.3 (AM computations)

@ A finite computation is a finite configuration sequence of the form
0,71, - - -,k Where k € N and ~y;_1 >y, for each i € {1,... k}

o If, in addition, there is no ~ such that v, > v, then v9,71, ...,k is
called terminating

@ A looping computation is an infinite configuration sequence of the
form 0,71, 72, . .. where ; > 11 for each i € N
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Terminating and Looping Computations

Definition 16.3 (AM computations)

@ A finite computation is a finite configuration sequence of the form
0,71, - - -,k Where k € N and ~y;_1 >y, for each i € {1,... k}

o If, in addition, there is no ~ such that v, > v, then v9,71, ...,k is
called terminating

@ A looping computation is an infinite configuration sequence of the
form 0,71, 72, . .. where ; > 11 for each i € N

Note: a terminating computation may end in a final configuration
((e,e,0)) or in a stuck configuration (e.g., (ADD, 1, 0))
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A Terminating Computation

Example 16.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) : LOAD(x) : ADD: STORE(x) , £, o)
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A Terminating Computation

Example 16.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) : LOAD(x) : ADD: STORE(x) , £, o)
> (LOAD(x) :ADD:STORE(x),1,0)
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A Terminating Computation

Example 16.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) : LOAD(x) : ADD: STORE(x) , £, o)
> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)
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A Terminating Computation

Example 16.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) :LOAD(x) : ADD: STORE(x), ¢, 0)
>> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)
> (STORE(x),4,0)
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A Terminating Computation

Example 16.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) :LOAD(x) : ADD: STORE(x), ¢, 0)
>> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)
> (STORE(x),4,0)
> (g,e,0[x— 4])
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A Terminating Computation

Example 16.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) :LOAD(x) : ADD: STORE(x), ¢, 0)
>> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)
> (STORE(x),4,0)
> (g,e,0[x— 4])

Remark: implements statement x := x + 1
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A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
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A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
> (TRUE:BRANCH (NOOP: LOOP (TRUE,NOOP) ,NOOP), £, o)
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A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
> (TRUE:BRANCH (NOOP: LOOP (TRUE,NOOP) ,NOOP), £, o)
> (BRANCH(NOOP :LOOP (TRUE,NOOP) ,NOOP), true, o)

RWTH Semantics and Verification of Software Winter Semester 2011/12 16.16



A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
> (TRUE:BRANCH (NOOP: LOOP (TRUE,NOOP) ,NOOP), £, o)
> (BRANCH(NOOP :LOOP (TRUE,NOOP) ,NOOP), true, o)
> (NOOP:LOOP(TRUE,NOOP), ¢, o)
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A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
> (TRUE:BRANCH (NOOP: LOOP (TRUE,NOOP) ,NOOP), £, o)
> (BRANCH(NOOP: LOOP (TRUE,NOOP) ,NOOP), true, o)
> (NOOP:LOOP (TRUE,NOOP), ¢, o)
> (LOOP(TRUE,NOOP), ¢, o)
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A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
> (TRUE:BRANCH (NOOP: LOOP (TRUE,NOOP) ,NOOP), £, o)
> (BRANCH(NOOP: LOOP (TRUE,NOOP) ,NOOP), true, o)
> (NOOP:LOOP (TRUE,NOOP), ¢, o)
> (LOOP(TRUE,NOOP), ¢, o)
> .
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A Looping Computation

Example 16.5

The following computation loops:

(LOOP (TRUE,NOOP), &, o)
> (TRUE:BRANCH (NOOP: LOOP (TRUE,NOOP) ,NOOP), £, o)
> (BRANCH(NOOP: LOOP (TRUE,NOOP) ,NOOP), true, o)
> (NOOP:LOOP (TRUE,NOOP), ¢, o)
> (LOOP(TRUE,NOOP), ¢, o)
> .

Remark: implements statement while true do skip
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@ Properties of AM
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A New Inductive Principle

Application: Finite computations (Def. 16.3)

Definition: a finite computation g, 71, - .., vk has length k
Induction base: property holds for all computations of length 0
Induction hypothesis: property holds for all computations of length < k
Induction step: property holds for all computations of length k + 1
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Application: Extension of Code and Stack

Lemma 16.6
If (dh,e1,0)>*(d',€,0'), then

(dl cdb, e 62,0'> >* <d, : d27e, : 3270J>

for every d> € Code and e, € Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine
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Application: Extension of Code and Stack

Lemma 16.6
If (dh,e1,0)>*(d',€,0'), then

(di: da,e1:e,0)>" (d': dy, e i e,0")

for every d> € Code and e, € Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

by induction on the length of the computation
(on the board) O
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